Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes

电解质 快离子导体 电化学 材料科学 分解 重量分析 氧化还原 电化学窗口 化学工程 化学 无机化学 电极 离子电导率 物理化学 有机化学 工程类
作者
Tammo K. Schwietert,Violetta A. Arszelewska,Chao Wang,Chuang Yu,Alexandros Vasileiadis,Niek J. J. de Klerk,J.C.L. Hageman,Thomas Hupfer,Ingo Kerkamm,Yaolin Xu,Eveline van der Maas,Erik M. Kelder,Swapna Ganapathy,Marnix Wagemaker
出处
期刊:Nature Materials [Springer Nature]
卷期号:19 (4): 428-435 被引量:389
标识
DOI:10.1038/s41563-019-0576-0
摘要

All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite, garnet and NASICON type solid electrolytes, that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is significantly larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助su采纳,获得10
1秒前
Ll发布了新的文献求助10
1秒前
pi发布了新的文献求助10
1秒前
尔晚完成签到,获得积分10
1秒前
长情绿凝发布了新的文献求助10
1秒前
完美世界应助Huaiman采纳,获得10
1秒前
JamesPei应助zhaomr采纳,获得10
1秒前
调研昵称发布了新的文献求助10
1秒前
1秒前
雨中的诗柳完成签到,获得积分10
1秒前
酷波er应助小鼠拯救者采纳,获得10
1秒前
丘比特应助动听导师采纳,获得10
1秒前
2秒前
2秒前
Krystal完成签到,获得积分10
2秒前
逝水无痕完成签到,获得积分10
2秒前
lkc发布了新的文献求助10
4秒前
4秒前
又村完成签到 ,获得积分10
4秒前
jiojio完成签到,获得积分10
5秒前
蔡小葵发布了新的文献求助10
5秒前
Acc完成签到,获得积分10
5秒前
5秒前
yasan发布了新的文献求助10
5秒前
小怀完成签到 ,获得积分10
6秒前
6秒前
Mia完成签到 ,获得积分20
6秒前
友好灵萱完成签到,获得积分10
6秒前
6秒前
ah完成签到,获得积分10
7秒前
科研CY发布了新的文献求助10
7秒前
假行僧完成签到,获得积分10
7秒前
刘芸芸发布了新的文献求助10
7秒前
赖建琛完成签到 ,获得积分10
8秒前
8秒前
8秒前
哆啦顺利毕业完成签到,获得积分10
9秒前
9秒前
32完成签到 ,获得积分10
9秒前
曼尼完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762