电解质
快离子导体
电化学
材料科学
分解
重量分析
氧化还原
电化学窗口
化学工程
化学
无机化学
电极
离子电导率
物理化学
有机化学
工程类
作者
Tammo K. Schwietert,Violetta A. Arszelewska,Chao Wang,Chuang Yu,Alexandros Vasileiadis,Niek J. J. de Klerk,J.C.L. Hageman,Thomas Hupfer,Ingo Kerkamm,Yaolin Xu,Eveline van der Maas,Erik M. Kelder,Swapna Ganapathy,Marnix Wagemaker
出处
期刊:Nature Materials
[Springer Nature]
日期:2020-01-13
卷期号:19 (4): 428-435
被引量:357
标识
DOI:10.1038/s41563-019-0576-0
摘要
All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite, garnet and NASICON type solid electrolytes, that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is significantly larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI