期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers] 日期:2011-03-01卷期号:58 (3): 509-516被引量:10
Ultrasonic elastography is an imaging technique providing information about the relative stiffness of biological tissues. In general, elastography suffers from noise artifacts, which degrade lesion detectability and increase the likelihood of misdiagnosis. This paper proposes a method called transmit- side frequency compounding for elastography (TSFC). Beamforming is modified to transmit frames with N alternating center frequencies. Pairs of frames with the same center frequency are used to calculate sub-elastograms that are then averaged to produce one compounded elastogram. Simulation results based on an uniformly elastic tissue model demonstrate the decorrelation among sub-elastograms and the improvement in elastographic signal-to-noise ratio (SNRe) achieved by compounding sub-elastograms. An elastic phantom experiment further validates the noise reduction obtained by the proposed technique.