数学
二项式(多项式)
上下界
分位数
功能(生物学)
组合数学
二项分布
分布(数学)
负二项分布
离散数学
法学
统计
数学分析
泊松分布
进化生物学
政治学
生物
作者
A. M. Zubkov,Alexander Serov
标识
DOI:10.1137/s0040585x97986138
摘要
We present a new form and a short complete proof of explicit two-sided estimates for the distribution function $F_{n,p}(k)$ of the binomial law with parameters $n,p$ from [D. Alfers and H. Dinges, Z. Wahrsch. Verw. Geb., 65 (1984), pp. 399--420]. These inequalities are universal (valid for all values of parameters and argument) and exact (namely, the upper bound for $F_{n,p}(k)$ is the lower bound for $F_{n,p}(k+1)$). Such estimates allow to bound any quantile of the binomial law by two subsequent integers that it contains.
科研通智能强力驱动
Strongly Powered by AbleSci AI