Measuring phenological variability from satellite imagery

物候学 归一化差异植被指数 土地覆盖 先进超高分辨率辐射计 环境科学 植被(病理学) 每年落叶的 遥感 卫星 卫星图像 气候学 自然地理学 气候变化 地理 土地利用 生态学 地质学 工程类 病理 航空航天工程 生物 医学
作者
Bradley C. Reed,J. F. Brown,Darrel VanderZee,Thomas R. Loveland,James W. Merchant,Donald O. Ohlen
出处
期刊:Journal of Vegetation Science [Wiley]
卷期号:5 (5): 703-714 被引量:1401
标识
DOI:10.2307/3235884
摘要

Abstract. Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time‐series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite‐derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large‐area land cover mapping and monitoring. The utility of remotely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助月亮采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
ren发布了新的文献求助20
4秒前
Azhou发布了新的文献求助20
4秒前
5秒前
海纳百川发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
yolo发布了新的文献求助10
8秒前
听雪楼完成签到,获得积分10
8秒前
北山发布了新的文献求助10
9秒前
ren完成签到,获得积分20
9秒前
slz发布了新的文献求助10
9秒前
9秒前
ding应助Dylan采纳,获得10
10秒前
Akim应助友好的晓亦采纳,获得10
11秒前
彭于晏应助gg采纳,获得10
11秒前
hanghang发布了新的文献求助10
11秒前
12秒前
12秒前
所所应助小费采纳,获得10
12秒前
D3发布了新的文献求助10
12秒前
海纳百川完成签到,获得积分10
13秒前
子彧完成签到,获得积分10
13秒前
实验一定顺应助Natasha采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
SSR发布了新的文献求助10
14秒前
蓝天应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
longer发布了新的文献求助10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
222完成签到,获得积分10
15秒前
蓝天应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454