Measuring phenological variability from satellite imagery

物候学 归一化差异植被指数 土地覆盖 先进超高分辨率辐射计 环境科学 植被(病理学) 每年落叶的 遥感 卫星 卫星图像 气候学 自然地理学 气候变化 地理 土地利用 生态学 地质学 工程类 病理 航空航天工程 生物 医学
作者
Bradley C. Reed,J. F. Brown,Darrel VanderZee,Thomas R. Loveland,James W. Merchant,Donald O. Ohlen
出处
期刊:Journal of Vegetation Science [Wiley]
卷期号:5 (5): 703-714 被引量:1401
标识
DOI:10.2307/3235884
摘要

Abstract. Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time‐series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite‐derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large‐area land cover mapping and monitoring. The utility of remotely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
调皮小土豆完成签到,获得积分10
刚刚
盏盏完成签到,获得积分10
刚刚
刚刚
old杜完成签到,获得积分10
1秒前
科研通AI2S应助满意的短靴采纳,获得10
1秒前
bobo完成签到,获得积分10
3秒前
烟花应助任性凤凰采纳,获得10
3秒前
打打应助阿涂采纳,获得10
3秒前
少夫人发布了新的文献求助50
4秒前
XiaoZe完成签到,获得积分20
4秒前
小乔完成签到,获得积分10
4秒前
充电宝应助矮小的猎豹采纳,获得10
5秒前
cc完成签到 ,获得积分10
5秒前
上官若男应助XIA采纳,获得10
5秒前
ikun发布了新的文献求助10
6秒前
古术新知完成签到 ,获得积分10
6秒前
yijian发布了新的文献求助20
6秒前
白潇潇完成签到 ,获得积分10
6秒前
今后应助科研通管家采纳,获得10
7秒前
Rainbow完成签到,获得积分10
7秒前
xzy998应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
GPTea应助科研通管家采纳,获得150
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
王旋完成签到,获得积分10
8秒前
8秒前
思芋奶糕完成签到,获得积分10
9秒前
10秒前
11秒前
思芋奶糕发布了新的文献求助10
11秒前
cdhuang发布了新的文献求助10
11秒前
ooa4321发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532