渡线
差异进化
特征向量
数学
水准点(测量)
CMA-ES公司
数学优化
微分算子
操作员(生物学)
计算机科学
算法
应用数学
进化策略
进化计算
人工智能
数学分析
物理
基因
抑制因子
转录因子
化学
量子力学
生物化学
地理
大地测量学
作者
Shu‐Mei Guo,Chin-Chang Yang
标识
DOI:10.1109/tevc.2013.2297160
摘要
Differential evolution has been shown to be an effective methodology for solving optimization problems over continuous space. In this paper, we propose an eigenvector-based crossover operator. The proposed operator utilizes eigenvectors of covariance matrix of individual solutions, which makes the crossover rotationally invariant. More specifically, the donor vectors during crossover are modified, by projecting each donor vector onto the eigenvector basis that provides an alternative coordinate system. The proposed operator can be applied to any crossover strategy with minimal changes. The experimental results show that the proposed operator significantly improves DE performance on a set of 54 test functions in CEC 2011, BBOB 2012, and CEC 2013 benchmark sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI