清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Can valid and practical risk-prediction or casemix adjustment models, including adjustment for comorbidity, be generated from English hospital administrative data (Hospital Episode Statistics)? A national observational study

共病 医学 逻辑回归 观察研究 急诊医学 医疗急救 内科学
作者
Alex Bottle,R. Gaudoin,R. Ian Goudie,Simon Jones,Paul Aylin
出处
期刊:Health Services and Delivery Research [NIHR Journals Library]
卷期号:2 (40): 1-48 被引量:19
标识
DOI:10.3310/hsdr02400
摘要

Background NHS hospitals collect a wealth of administrative data covering accident and emergency (A&E) department attendances, inpatient and day case activity, and outpatient appointments. Such data are increasingly being used to compare units and services, but adjusting for risk is difficult. Objectives To derive robust risk-adjustment models for various patient groups, including those admitted for heart failure (HF), acute myocardial infarction, colorectal and orthopaedic surgery, and outcomes adjusting for available patient factors such as comorbidity, using England’s Hospital Episode Statistics (HES) data. To assess if more sophisticated statistical methods based on machine learning such as artificial neural networks (ANNs) outperform traditional logistic regression (LR) for risk prediction. To update and assess for the NHS the Charlson index for comorbidity. To assess the usefulness of outpatient data for these models. Main outcome measures Mortality, readmission, return to theatre, outpatient non-attendance. For HF patients we considered various readmission measures such as diagnosis-specific and total within a year. Methods We systematically reviewed studies comparing two or more comorbidity indices. Logistic regression, ANNs, support vector machines and random forests were compared for mortality and readmission. Models were assessed using discrimination and calibration statistics. Competing risks proportional hazards regression and various count models were used for future admissions and bed-days. Results Our systematic review and empirical analysis suggested that for general purposes comorbidity is currently best described by the set of 30 Elixhauser comorbidities plus dementia. Model discrimination was often high for mortality and poor, or at best moderate, for other outcomes, for example c = 0.62 for readmission and c = 0.73 for death following stroke. Calibration was often good for procedure groups but poorer for diagnosis groups, with overprediction of low risk a common cause. The machine learning methods we investigated offered little beyond LR for their greater complexity and implementation difficulties. For HF, some patient-level predictors differed by primary diagnosis of readmission but not by length of follow-up. Prior non-attendance at outpatient appointments was a useful, strong predictor of readmission. Hospital-level readmission rates for HF did not correlate with readmission rates for non-HF; hospital performance on national audit process measures largely correlated only with HF readmission rates. Conclusions Many practical risk-prediction or casemix adjustment models can be generated from HES data using LR, though an extra step is often required for accurate calibration. Including outpatient data in readmission models is useful. The three machine learning methods we assessed added little with these data. Readmission rates for HF patients should be divided by diagnosis on readmission when used for quality improvement. Future work As HES data continue to develop and improve in scope and accuracy, they can be used more, for instance A&E records. The return to theatre metric appears promising and could be extended to other index procedures and specialties. While our data did not warrant the testing of a larger number of machine learning methods, databases augmented with physiological and pathology information, for example, might benefit from methods such as boosted trees. Finally, one could apply the HF readmissions analysis to other chronic conditions. Funding The National Institute for Health Research Health Services and Delivery Research programme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY关闭了YY文献求助
刚刚
量子星尘发布了新的文献求助10
8秒前
41秒前
超男完成签到 ,获得积分10
49秒前
CUN完成签到,获得积分10
58秒前
猫猫i完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
YY驳回了打打应助
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Qian完成签到 ,获得积分10
2分钟前
白天亮完成签到,获得积分10
3分钟前
宇文非笑完成签到 ,获得积分10
3分钟前
3分钟前
游鱼完成签到,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
传奇完成签到 ,获得积分10
3分钟前
3分钟前
什么也难不倒我完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
YY给YY的求助进行了留言
4分钟前
缓慢的忆枫完成签到,获得积分20
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
文献搬运工完成签到 ,获得积分10
5分钟前
GIA完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
陶世立完成签到 ,获得积分10
6分钟前
轻松的甜瓜完成签到,获得积分10
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
nojego完成签到,获得积分10
7分钟前
光合作用完成签到,获得积分10
7分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983