How Donor−Bridge−Acceptor Energetics Influence Electron Tunneling Dynamics and Their Distance Dependences

超级交换 量子隧道 电子转移 电子 化学物理 接受者 化学 带隙 桥接(联网) 能量学 电子传输链 马库斯理论 原子物理学 分子物理学 凝聚态物理 物理 离子 物理化学 量子力学 热力学 动力学 反应速率常数 生物化学 有机化学 计算机科学 计算机网络
作者
Oliver S. Wenger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:44 (1): 25-35 被引量:198
标识
DOI:10.1021/ar100092v
摘要

Long-range electron transfer may occur via two fundamentally different mechanisms depending on the combination of electron donor, acceptor, and the bridging medium between the two redox partners. Activating the so-called hopping mechanism requires matching the energy levels of the donor and the bridge. If electrons from the donor can thermodynamically access bridge-localized redox states, the bridge may be temporarily reduced before the electron is forwarded to the acceptor. As a result, electron transfer rates may demonstrate an extremely shallow dependence on distance. When transient reduction of the bridging medium is thermodynamically impossible, a tunneling mechanism that exponentially depends on distance becomes important for electron transport. Fifty years ago, superexchange theory had already predicted that electron transfer rates should be affected by donor−bridge−acceptor energetics even in the tunneling regime, in which the energy gap (Δε) is too large for electrons to hop from the donor onto the bridge. However, because electron tunneling rates depend on many parameters and the influence of donor−bridge energy gaps is difficult to distinguish from other influences, direct experimental support for the theoretical prediction has been difficult to find. Because of remarkable progress, particularly in the past couple of years, researchers have finally found direct evidence for the long-sought but elusive tunneling-energy gap effect. After a brief introduction to the theory of the tunneling mechanism, this Account discusses recent experimental results describing the importance of the tunneling-energy gap. Experimental studies in this area usually combine synthetic chemistry with electrochemical investigations and time-resolved (optical) spectroscopy. For example, we present a case study of hole tunneling through synthetic DNA hairpins, in which different donor−acceptor couples attached to the same hairpins resulted in tunneling rates with significantly different dependences on distance. Recent systematic studies of conjugated molecular bridges have demonstrated the same result: The distance decay constant (β), which describes the steepness of the exponential decrease of charge tunneling rates with increasing donor-acceptor distance, is not a property of the bridge alone; rather it is a sensitive function of the entire donor−bridge−acceptor (D-b-A) combination. In selected cases, researchers have found a quantitative relationship between the experimentally determined distance decay constant (β) and the magnitude of the tunneling-energy gap (Δε). The rates and efficiencies of charge transfer reactions occurring over long distances are of pivotal importance in light-to-chemical energy conversion and molecular electronics. Tunneling-energy gap effects play an intriguing role in the formation of long-lived charge-separated states after photoexcitation: The kinetic stabilization of these charge-separated states frequently exploits the inverted driving-force effect. Recent studies indicate that tunneling-energy gap effects can differentiate the distance dependences of energy-storing charge-separation reactions from those of energy-wasting charge-recombination processes. Thus, the exploitation of tunneling-energy gap effects may provide an additional way to obtain long-lived charge-separated states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助22艾克斯采纳,获得10
刚刚
机会完成签到,获得积分10
1秒前
醉眠发布了新的文献求助10
1秒前
慌小丧完成签到,获得积分10
3秒前
Yuan发布了新的文献求助10
3秒前
健壮的月光完成签到,获得积分10
4秒前
zhaoxiaonuan完成签到,获得积分10
4秒前
6秒前
haohao完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
RUHUAN发布了新的文献求助10
10秒前
呆萌乘风完成签到,获得积分20
10秒前
风吹而过完成签到 ,获得积分10
11秒前
fuxiao完成签到 ,获得积分10
12秒前
13秒前
13秒前
6666发布了新的文献求助10
13秒前
默默问晴发布了新的文献求助10
14秒前
青年才俊发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助150
15秒前
小二郎应助子铭采纳,获得10
16秒前
17秒前
mm梦完成签到,获得积分20
17秒前
风华正茂完成签到 ,获得积分10
18秒前
呼了个呼完成签到,获得积分10
18秒前
tananna完成签到,获得积分10
18秒前
18秒前
qq158014169完成签到 ,获得积分10
19秒前
轩辕白竹完成签到,获得积分10
19秒前
Islandkwaii完成签到 ,获得积分10
21秒前
22秒前
幼稚园大班班长完成签到,获得积分10
22秒前
23秒前
勤劳驳发布了新的文献求助10
24秒前
雨碎寒江发布了新的文献求助10
24秒前
离晞完成签到,获得积分10
24秒前
2Y_DADA发布了新的文献求助10
24秒前
橘子完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968497
求助须知:如何正确求助?哪些是违规求助? 4225884
关于积分的说明 13160462
捐赠科研通 4012819
什么是DOI,文献DOI怎么找? 2195814
邀请新用户注册赠送积分活动 1209191
关于科研通互助平台的介绍 1123270