已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How Donor−Bridge−Acceptor Energetics Influence Electron Tunneling Dynamics and Their Distance Dependences

超级交换 量子隧道 电子转移 电子 化学物理 接受者 化学 带隙 桥接(联网) 能量学 电子传输链 马库斯理论 原子物理学 分子物理学 凝聚态物理 物理 离子 物理化学 量子力学 热力学 动力学 反应速率常数 生物化学 有机化学 计算机科学 计算机网络
作者
Oliver S. Wenger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:44 (1): 25-35 被引量:198
标识
DOI:10.1021/ar100092v
摘要

Long-range electron transfer may occur via two fundamentally different mechanisms depending on the combination of electron donor, acceptor, and the bridging medium between the two redox partners. Activating the so-called hopping mechanism requires matching the energy levels of the donor and the bridge. If electrons from the donor can thermodynamically access bridge-localized redox states, the bridge may be temporarily reduced before the electron is forwarded to the acceptor. As a result, electron transfer rates may demonstrate an extremely shallow dependence on distance. When transient reduction of the bridging medium is thermodynamically impossible, a tunneling mechanism that exponentially depends on distance becomes important for electron transport. Fifty years ago, superexchange theory had already predicted that electron transfer rates should be affected by donor−bridge−acceptor energetics even in the tunneling regime, in which the energy gap (Δε) is too large for electrons to hop from the donor onto the bridge. However, because electron tunneling rates depend on many parameters and the influence of donor−bridge energy gaps is difficult to distinguish from other influences, direct experimental support for the theoretical prediction has been difficult to find. Because of remarkable progress, particularly in the past couple of years, researchers have finally found direct evidence for the long-sought but elusive tunneling-energy gap effect. After a brief introduction to the theory of the tunneling mechanism, this Account discusses recent experimental results describing the importance of the tunneling-energy gap. Experimental studies in this area usually combine synthetic chemistry with electrochemical investigations and time-resolved (optical) spectroscopy. For example, we present a case study of hole tunneling through synthetic DNA hairpins, in which different donor−acceptor couples attached to the same hairpins resulted in tunneling rates with significantly different dependences on distance. Recent systematic studies of conjugated molecular bridges have demonstrated the same result: The distance decay constant (β), which describes the steepness of the exponential decrease of charge tunneling rates with increasing donor-acceptor distance, is not a property of the bridge alone; rather it is a sensitive function of the entire donor−bridge−acceptor (D-b-A) combination. In selected cases, researchers have found a quantitative relationship between the experimentally determined distance decay constant (β) and the magnitude of the tunneling-energy gap (Δε). The rates and efficiencies of charge transfer reactions occurring over long distances are of pivotal importance in light-to-chemical energy conversion and molecular electronics. Tunneling-energy gap effects play an intriguing role in the formation of long-lived charge-separated states after photoexcitation: The kinetic stabilization of these charge-separated states frequently exploits the inverted driving-force effect. Recent studies indicate that tunneling-energy gap effects can differentiate the distance dependences of energy-storing charge-separation reactions from those of energy-wasting charge-recombination processes. Thus, the exploitation of tunneling-energy gap effects may provide an additional way to obtain long-lived charge-separated states.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬寒松发布了新的文献求助60
1秒前
2秒前
刻苦的冬易完成签到 ,获得积分10
5秒前
脑洞疼应助f1mike110采纳,获得10
5秒前
Orange应助超级野狼采纳,获得10
5秒前
6秒前
pay发布了新的文献求助10
8秒前
9秒前
细心怀亦完成签到 ,获得积分10
13秒前
sssyyy发布了新的文献求助10
14秒前
Guts发布了新的文献求助10
14秒前
19秒前
zl13332完成签到 ,获得积分10
21秒前
shy完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
111发布了新的文献求助10
26秒前
26秒前
29秒前
30秒前
马宁婧完成签到 ,获得积分10
33秒前
柠木完成签到 ,获得积分10
35秒前
Dr.c发布了新的文献求助10
37秒前
38秒前
小明完成签到,获得积分10
39秒前
Airsjz发布了新的文献求助10
44秒前
44秒前
Jemma完成签到 ,获得积分10
45秒前
轨迹应助小彬采纳,获得10
46秒前
Guts发布了新的文献求助10
47秒前
48秒前
DD发布了新的文献求助10
48秒前
zp19877891完成签到,获得积分10
49秒前
毛舒敏完成签到 ,获得积分10
51秒前
Aris发布了新的文献求助30
52秒前
不许动完成签到 ,获得积分10
52秒前
爆米花应助研究牲采纳,获得10
55秒前
小刘完成签到,获得积分10
56秒前
科研通AI6.1应助Guts采纳,获得10
57秒前
武愿完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387