How Donor−Bridge−Acceptor Energetics Influence Electron Tunneling Dynamics and Their Distance Dependences

超级交换 量子隧道 电子转移 电子 化学物理 接受者 化学 带隙 桥接(联网) 能量学 电子传输链 马库斯理论 原子物理学 分子物理学 凝聚态物理 物理 离子 物理化学 量子力学 热力学 动力学 计算机网络 生物化学 有机化学 计算机科学 反应速率常数
作者
Oliver S. Wenger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:44 (1): 25-35 被引量:198
标识
DOI:10.1021/ar100092v
摘要

Long-range electron transfer may occur via two fundamentally different mechanisms depending on the combination of electron donor, acceptor, and the bridging medium between the two redox partners. Activating the so-called hopping mechanism requires matching the energy levels of the donor and the bridge. If electrons from the donor can thermodynamically access bridge-localized redox states, the bridge may be temporarily reduced before the electron is forwarded to the acceptor. As a result, electron transfer rates may demonstrate an extremely shallow dependence on distance. When transient reduction of the bridging medium is thermodynamically impossible, a tunneling mechanism that exponentially depends on distance becomes important for electron transport. Fifty years ago, superexchange theory had already predicted that electron transfer rates should be affected by donor−bridge−acceptor energetics even in the tunneling regime, in which the energy gap (Δε) is too large for electrons to hop from the donor onto the bridge. However, because electron tunneling rates depend on many parameters and the influence of donor−bridge energy gaps is difficult to distinguish from other influences, direct experimental support for the theoretical prediction has been difficult to find. Because of remarkable progress, particularly in the past couple of years, researchers have finally found direct evidence for the long-sought but elusive tunneling-energy gap effect. After a brief introduction to the theory of the tunneling mechanism, this Account discusses recent experimental results describing the importance of the tunneling-energy gap. Experimental studies in this area usually combine synthetic chemistry with electrochemical investigations and time-resolved (optical) spectroscopy. For example, we present a case study of hole tunneling through synthetic DNA hairpins, in which different donor−acceptor couples attached to the same hairpins resulted in tunneling rates with significantly different dependences on distance. Recent systematic studies of conjugated molecular bridges have demonstrated the same result: The distance decay constant (β), which describes the steepness of the exponential decrease of charge tunneling rates with increasing donor-acceptor distance, is not a property of the bridge alone; rather it is a sensitive function of the entire donor−bridge−acceptor (D-b-A) combination. In selected cases, researchers have found a quantitative relationship between the experimentally determined distance decay constant (β) and the magnitude of the tunneling-energy gap (Δε). The rates and efficiencies of charge transfer reactions occurring over long distances are of pivotal importance in light-to-chemical energy conversion and molecular electronics. Tunneling-energy gap effects play an intriguing role in the formation of long-lived charge-separated states after photoexcitation: The kinetic stabilization of these charge-separated states frequently exploits the inverted driving-force effect. Recent studies indicate that tunneling-energy gap effects can differentiate the distance dependences of energy-storing charge-separation reactions from those of energy-wasting charge-recombination processes. Thus, the exploitation of tunneling-energy gap effects may provide an additional way to obtain long-lived charge-separated states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力捕发布了新的文献求助10
1秒前
王蕊完成签到,获得积分10
1秒前
科研通AI2S应助muhaicbj采纳,获得10
1秒前
Anquan发布了新的文献求助10
1秒前
皓月繁星发布了新的文献求助10
1秒前
华仔应助myco采纳,获得30
2秒前
Owen应助田小姐采纳,获得10
2秒前
xingxing发布了新的文献求助10
2秒前
可靠的季节完成签到,获得积分10
3秒前
小小完成签到 ,获得积分10
3秒前
3秒前
3秒前
Vvvvvvv应助拽根大恐龙采纳,获得10
3秒前
4秒前
大个应助长乐未央采纳,获得30
4秒前
耍酷夜蓉发布了新的文献求助10
4秒前
4秒前
认真子默发布了新的文献求助10
6秒前
jisimyang98完成签到,获得积分10
6秒前
6秒前
zcq2425完成签到,获得积分20
7秒前
落后易绿发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
科研小白发布了新的文献求助10
8秒前
green发布了新的文献求助30
9秒前
漾漾发布了新的文献求助20
9秒前
快乐寄风完成签到 ,获得积分10
9秒前
9秒前
10秒前
典雅的惜萱完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
10秒前
万默发布了新的文献求助10
11秒前
11秒前
11秒前
干净博涛完成签到 ,获得积分10
12秒前
Bocy发布了新的文献求助10
12秒前
小林太郎应助断绝的采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522709
求助须知:如何正确求助?哪些是违规求助? 3103705
关于积分的说明 9266832
捐赠科研通 2800287
什么是DOI,文献DOI怎么找? 1536901
邀请新用户注册赠送积分活动 715181
科研通“疑难数据库(出版商)”最低求助积分说明 708660