A genetic algorithm for the vehicle routing problem

车辆路径问题 模拟退火 禁忌搜索 数学优化 时限 水准点(测量) 遗传算法 计算机科学 邻里(数学) 极限(数学) 布线(电子设计自动化) 运筹学 数学 工程类 计算机网络 数学分析 系统工程 大地测量学 地理
作者
Barrie M. Baker,M. A. Ayechew
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:30 (5): 787-800 被引量:709
标识
DOI:10.1016/s0305-0548(02)00051-5
摘要

This study considers the application of a genetic algorithm (GA) to the basic vehicle routing problem (VRP), in which customers of known demand are supplied from a single depot. Vehicles are subject to a weight limit and, in some cases, to a limit on the distance travelled. Only one vehicle is allowed to supply each customer. The best known results for benchmark VRPs have been obtained using tabu search or simulated annealing. GAs have seen widespread application to various combinatorial optimisation problems, including certain types of vehicle routing problem, especially where time windows are included. However, they do not appear to have made a great impact so far on the VRP as described here. In this paper, computational results are given for the pure GA which is put forward. Further results are given using a hybrid of this GA with neighbourhood search methods, showing that this approach is competitive with tabu search and simulated annealing in terms of solution time and quality. The basic vehicle routing problem (VRP) consists of a number of customers, each requiring a specified weight of goods to be delivered. Vehicles despatched from a single depot must deliver the goods required, then return to the depot. Each vehicle can carry a limited weight and may also be restricted in the total distance it can travel. Only one vehicle is allowed to visit each customer. The problem is to find a set of delivery routes satisfying these requirements and giving minimal total cost. In practice, this is often taken to be equivalent to minimising the total distance travelled, or to minimising the number of vehicles used and then minimising total distance for this number of vehicles. Most published research for the VRP has focused on the development of heuristics. Although the development of modern heuristics has led to considerable progress, the quest for improved performance continues. Genetic algorithms (GAs) have been used to tackle many combinatorial problems, including certain types of vehicle routing problem. However, it appears that GAs have not yet made a great impact on the VRP as described here. This paper describes a GA that we have developed for the VRP, showing that this approach can be competitive with other modern heuristic techniques in terms of solution time and quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mrif完成签到 ,获得积分20
2秒前
CodeCraft应助wu采纳,获得10
2秒前
淋漓尽致完成签到,获得积分10
2秒前
4秒前
Amber发布了新的文献求助80
4秒前
橘子发布了新的文献求助10
5秒前
科研通AI2S应助个性砖家采纳,获得10
7秒前
7秒前
传奇3应助liugm采纳,获得10
7秒前
7秒前
缓慢珠发布了新的文献求助10
9秒前
HUMBLE完成签到,获得积分10
10秒前
11秒前
Fx完成签到 ,获得积分10
12秒前
14秒前
慕迎蕾完成签到,获得积分10
14秒前
虚幻的凝梦完成签到,获得积分10
14秒前
橘子完成签到,获得积分10
15秒前
16秒前
王梦瑶完成签到 ,获得积分10
17秒前
淡定凛完成签到,获得积分10
17秒前
慕迎蕾发布了新的文献求助10
17秒前
17秒前
18秒前
情怀应助望都采纳,获得30
18秒前
18秒前
18秒前
naturehome发布了新的文献求助10
19秒前
19秒前
JQK完成签到 ,获得积分10
20秒前
歇儿哒哒完成签到,获得积分10
23秒前
壮观问寒发布了新的文献求助10
23秒前
Amber完成签到,获得积分10
23秒前
酷炫觅松发布了新的文献求助10
23秒前
24秒前
popo6150完成签到,获得积分10
24秒前
25秒前
QUHUI完成签到,获得积分10
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905