已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attribute Reduction for Heterogeneous Data Based on the Combination of Classical and Fuzzy Rough Set Models

粗集 粒度计算 基于优势度的粗糙集方法 还原(数学) 数学 属性域 数据挖掘 模糊集 隶属函数 计算机科学 功能(生物学) 模糊逻辑 人工智能 几何学 进化生物学 生物
作者
Degang Chen,Yanyan Yang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (5): 1325-1334 被引量:109
标识
DOI:10.1109/tfuzz.2013.2291570
摘要

Attribute reduction with rough sets aims to delete superfluous condition attributes from a decision system by considering the inconsistency between condition attributes and the decision labels. However, heterogeneous condition attributes including symbolic and real-valued ones always coexist for most decision systems and different types of attributes induce different kinds of granular structures. The existing rough set models do not have explicit mechanisms to address different kinds of granular structures reasonably and effectively. In this paper, we aim to perform attribute reduction for decision systems with symbolic and real-valued condition attributes by composing classical rough set and fuzzy rough set models. We first define a discernibility relation for every symbolic and real-valued condition attribute to characterize its discernible ability related to the decision labels. With these discernibility relations, we can develop a dependence function to measure the inconsistency between heterogeneous condition attributes and decision labels, and attribute reduction aims to keep this dependence function with a small perturbation. The proposed attribute reduction deals with heterogeneous condition attributes from the viewpoint of discernible ability and can consider the mutual effects between two types of attributes without preprocessing into single-typed ones. An algorithm to find reducts is developed and experiments are performed to demonstrate that the proposed idea is effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
氼乚发布了新的文献求助10
1秒前
HY发布了新的文献求助10
4秒前
俊逸的问薇完成签到 ,获得积分10
8秒前
慕斯完成签到,获得积分10
14秒前
CipherSage应助Ekkoye采纳,获得10
15秒前
17秒前
子月之路完成签到,获得积分10
17秒前
___淡完成签到 ,获得积分10
17秒前
飞鱼z完成签到,获得积分10
19秒前
B612小行星完成签到 ,获得积分10
21秒前
HY发布了新的文献求助10
22秒前
23秒前
SciGPT应助迷你的水绿采纳,获得10
24秒前
子车茗应助氼乚采纳,获得30
24秒前
24秒前
Washfacemilk发布了新的文献求助10
29秒前
30秒前
32秒前
HY发布了新的文献求助10
35秒前
Ekkoye发布了新的文献求助10
37秒前
Aaron发布了新的文献求助10
38秒前
SCT发布了新的文献求助10
43秒前
Aaron完成签到,获得积分10
46秒前
雨齐完成签到,获得积分10
48秒前
Ekkoye完成签到,获得积分10
49秒前
英俊的铭应助光亮的逍遥采纳,获得10
51秒前
55秒前
李健的小迷弟应助stresm采纳,获得10
59秒前
HY完成签到,获得积分10
59秒前
1分钟前
1分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
1分钟前
pylchm发布了新的文献求助10
1分钟前
九日橙完成签到 ,获得积分10
1分钟前
1分钟前
痴情的迎蕾完成签到,获得积分10
1分钟前
Cheng完成签到 ,获得积分10
1分钟前
fengliurencai完成签到,获得积分10
1分钟前
研友_VZG7GZ应助pylchm采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310983
求助须知:如何正确求助?哪些是违规求助? 2943826
关于积分的说明 8516538
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432072
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802