Attribute Reduction for Heterogeneous Data Based on the Combination of Classical and Fuzzy Rough Set Models

粗集 粒度计算 基于优势度的粗糙集方法 还原(数学) 数学 属性域 数据挖掘 模糊集 隶属函数 计算机科学 功能(生物学) 模糊逻辑 人工智能 几何学 进化生物学 生物
作者
Degang Chen,Yanyan Yang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (5): 1325-1334 被引量:109
标识
DOI:10.1109/tfuzz.2013.2291570
摘要

Attribute reduction with rough sets aims to delete superfluous condition attributes from a decision system by considering the inconsistency between condition attributes and the decision labels. However, heterogeneous condition attributes including symbolic and real-valued ones always coexist for most decision systems and different types of attributes induce different kinds of granular structures. The existing rough set models do not have explicit mechanisms to address different kinds of granular structures reasonably and effectively. In this paper, we aim to perform attribute reduction for decision systems with symbolic and real-valued condition attributes by composing classical rough set and fuzzy rough set models. We first define a discernibility relation for every symbolic and real-valued condition attribute to characterize its discernible ability related to the decision labels. With these discernibility relations, we can develop a dependence function to measure the inconsistency between heterogeneous condition attributes and decision labels, and attribute reduction aims to keep this dependence function with a small perturbation. The proposed attribute reduction deals with heterogeneous condition attributes from the viewpoint of discernible ability and can consider the mutual effects between two types of attributes without preprocessing into single-typed ones. An algorithm to find reducts is developed and experiments are performed to demonstrate that the proposed idea is effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hp发布了新的文献求助10
刚刚
1秒前
姚世娇完成签到 ,获得积分10
3秒前
FashionBoy应助高手采纳,获得10
4秒前
meng完成签到,获得积分10
5秒前
chennn完成签到,获得积分10
5秒前
7秒前
8秒前
晗月完成签到,获得积分10
8秒前
情怀应助如意枫叶采纳,获得10
9秒前
量子星尘发布了新的文献求助10
11秒前
Akim应助SS采纳,获得10
12秒前
张雷应助清新的夜蕾采纳,获得20
12秒前
chennn发布了新的文献求助10
12秒前
罗一完成签到,获得积分10
14秒前
16秒前
丘比特应助wu采纳,获得10
19秒前
俏皮芷蕊发布了新的文献求助30
19秒前
称心的菲鹰完成签到,获得积分10
20秒前
碧蓝问安发布了新的文献求助10
21秒前
21秒前
打打应助ZZZ采纳,获得10
23秒前
27秒前
呆萌板凳发布了新的文献求助10
27秒前
hp关闭了hp文献求助
28秒前
29秒前
都选C完成签到,获得积分10
30秒前
壮观以松完成签到,获得积分10
30秒前
Liufgui应助郭小宝采纳,获得20
30秒前
heli完成签到,获得积分10
32秒前
如意枫叶发布了新的文献求助10
33秒前
都选C发布了新的文献求助10
34秒前
英俊的铭应助淡烟流水采纳,获得10
35秒前
35秒前
Miracle完成签到,获得积分10
37秒前
41秒前
wu发布了新的文献求助10
41秒前
忧心的听双完成签到,获得积分10
41秒前
Timon完成签到,获得积分10
42秒前
深情安青应助Miracle采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136