自举(财务)
调解
调解
心理学
统计假设检验
计算机科学
多样性(控制论)
计量经济学
宏
统计
社会心理学
数学
人工智能
政治学
程序设计语言
法学
作者
Kristopher J. Preacher,Derek D. Rucker,Andrew F. Hayes
标识
DOI:10.1080/00273170701341316
摘要
This article provides researchers with a guide to properly construe and conduct analyses of conditional indirect effects, commonly known as moderated mediation effects. We disentangle conflicting definitions of moderated mediation and describe approaches for estimating and testing a variety of hypotheses involving conditional indirect effects. We introduce standard errors for hypothesis testing and construction of confidence intervals in large samples but advocate that researchers use bootstrapping whenever possible. We also describe methods for probing significant conditional indirect effects by employing direct extensions of the simple slopes method and Johnson-Neyman technique for probing significant interactions. Finally, we provide an SPSS macro to facilitate the implementation of the recommended asymptotic and bootstrapping methods. We illustrate the application of these methods with an example drawn from the Michigan Study of Adolescent Life Transitions, showing that the indirect effect of intrinsic student interest on mathematics performance through teacher perceptions of talent is moderated by student math self-concept.
科研通智能强力驱动
Strongly Powered by AbleSci AI