Benefits of the use of natural polymers include biodegradability, biocompatibility, natural abundance, and unique physicochemical/biological properties. Native alginate was used to semisynthesize a new class of biomaterial in which the physical properties such as swelling and pore size can be chemically tailored for desired end use. Semisynthetic network alginate polymer (SNAP) was prepared by reaction with glutaraldehyde, forming an acetal-linked network polymer gel with carboxylate moieties preserved as stimuli-responsive sensors. The molecular structure of the hydrogel was confirmed by cross-polarization magic-angle spinning (13)C solid state NMR, and reaction parameters affecting the polymer synthesis, including reactant, catalyst concentrations, and solvent composition, were characterized by gel equilibrium swelling. The acetalization reaction can be thermodynamically controlled, offering fine-tuned control of gel swelling and pore properties. In addition, SNAP demonstrated pronounced swelling at alkaline pH and contraction in acidic environment with oscillatory response to repeated pH-stimuli, yielding a potential pulsatile, oral drug delivery vehicle. Through selection of reaction conditions, gel swelling, pore size, and stimuli-responsive characteristics can be specifically tailored for applications such as a tissue scaffold in regenerative medicine, as a targeted delivery vehicle, and as a superabsorbent in environmental cleanup.