趋同(经济学)
数学
局部收敛
秩(图论)
序列(生物学)
数学证明
有界函数
应用数学
牛顿法
拟牛顿法
组合数学
算法
数学分析
迭代法
非线性系统
几何学
物理
生物
量子力学
经济
遗传学
经济增长
作者
C. G. Broyden,John E. Dennis,Jorge J. Moré
标识
DOI:10.1093/imamat/12.3.223
摘要
This paper presents a local convergence analysis for several well-known quasi-Newton methods when used, without line searches, in an iteration of the form to solve for x* such that Fx* = 0. The basic idea behind the proofs is that under certain reasonable conditions on xo, F and xo, the errors in the sequence of approximations {Hk} to F′(x*)−1 can be shown to be of bounded deterioration in that these errors, while not ensured to decrease, can increase only in a controlled way. Despite the fact that Hk is not shown to approach F′(x*)−1, the methods considered, including those based on the single-rank Broyden and double-rank Davidon-Fletcher-Powell formulae, generate locally Q-superlinearly convergent sequences {xk}.
科研通智能强力驱动
Strongly Powered by AbleSci AI