BMI-related errors in the measurement of obesity

生物电阻抗分析 体质指数 肥胖 医学 肥胖的分类 混淆 脂肪团 前瞻性队列研究 内科学 内分泌学
作者
Kenneth J. Rothman
出处
期刊:International Journal of Obesity [Springer Nature]
卷期号:32 (S3): S56-S59 被引量:966
标识
DOI:10.1038/ijo.2008.87
摘要

Body mass index (BMI) has various deficiencies as a measure of obesity, especially when the BMI measure is based on self-reported height and weight. BMI is an indirect measure of body fat compared with more direct approaches such as bioelectrical impedance. Moreover, BMI does not necessarily reflect the changes that occur with age. The proportion of body fat increases with age, whereas muscle mass decreases, but corresponding changes in height, weight and BMI may not reflect changes in body fat and muscle mass. Both the sensitivity and specificity of BMI have been shown to be poor. Additionally, the relation between BMI and percentage of body fat is not linear and differs for men and women. The consequences of the errors in the measurement of obesity with BMI depend on whether they are differential or nondifferential. Differential misclassification, a potentially greater problem in case-control and cross-sectional studies than in prospective cohort studies, can produce a bias toward or away from the null. Nondifferential misclassification produces a bias toward the null for a dichotomous exposure; for measures of exposure that are not dichotomous, the bias may be away from the null. In short, the use of BMI as a measure of obesity can introduce misclassification problems that may result in important bias in estimating the effects related to obesity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
取法乎上完成签到 ,获得积分10
3秒前
xiaozheng完成签到,获得积分10
5秒前
情怀应助一朵小鲜花儿采纳,获得10
9秒前
海鲜汤完成签到 ,获得积分10
9秒前
10秒前
15秒前
科研通AI5应助大力的无声采纳,获得10
15秒前
bkagyin应助大力的无声采纳,获得10
15秒前
16秒前
16秒前
16秒前
CodeCraft应助大力的无声采纳,获得10
16秒前
丘比特应助大力的无声采纳,获得10
16秒前
乐乐应助大力的无声采纳,获得10
16秒前
NexusExplorer应助大力的无声采纳,获得10
16秒前
在水一方应助大力的无声采纳,获得10
16秒前
CipherSage应助大力的无声采纳,获得10
16秒前
z7777777完成签到,获得积分10
16秒前
了0完成签到 ,获得积分10
16秒前
寒冷的复天完成签到,获得积分10
17秒前
18秒前
风筝鱼完成签到 ,获得积分10
18秒前
满意冷荷发布了新的文献求助10
19秒前
19秒前
cjjwei完成签到 ,获得积分10
19秒前
CipherSage应助Fanny采纳,获得20
20秒前
科研通AI2S应助小白果果采纳,获得10
20秒前
21秒前
shyの煜完成签到 ,获得积分10
21秒前
23秒前
刘佳佳完成签到 ,获得积分10
24秒前
兴奋觅海完成签到,获得积分10
25秒前
25秒前
cytheria完成签到 ,获得积分10
26秒前
诸笑白发布了新的文献求助10
27秒前
一生所爱完成签到,获得积分10
27秒前
Z1070741749完成签到,获得积分10
27秒前
sad发布了新的文献求助10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851