异质性
线粒体DNA
遗传学
生物
突变
转移RNA
横截
粒线体疾病
基因
人类线粒体遗传学
呼吸链
表型
过渡(遗传学)
线粒体
核糖核酸
作者
Helen Swalwell,Emma L. Blakely,Ruth E. Sutton,Katarzyna Tońska,Matthias Elstner,Langping He,Tanja Taivassalo,Dennis K. Burns,Douglass M. Turnbull,Ronald G. Haller,Mercy M. Davidson,Robert W. Taylor
摘要
Mutations in mitochondrial tRNA (mt-tRNA) genes are well recognized as a common cause of human disease, exhibiting a significant degree of clinical heterogeneity. While these differences are explicable, in part, by differences in the innate pathogenicity of the mutation, its distribution and abundance, other factors, including nuclear genetic background, mitochondrial DNA (mtDNA) haplotype and additional mtDNA mutations may influence the expression of mt-tRNA mutations. We describe the clinical, biochemical and molecular findings in a family with progressive myopathy, deafness and diabetes and striking respiratory chain abnormalities due to a well-characterized heteroplasmic mt-tRNA mutation in the mt-tRNASer(UCN) (MTTS1) gene. In addition to the m.7472Cins mutation, all individuals were homoplasmic for another variant, m.7472A>C, affecting the adjacent nucleotide in the mt-tRNASer(UCN) structure. In addition to available patient tissues, we have analysed transmitochondrial cybrid clones harbouring homoplasmic levels of m.7472A>C and varying levels of the m.7472Cins mutation in an attempt to clarify the precise role of the m.7472A>C transversion in the underlying respiratory chain abnormality. Evidence from both in vivo and in vitro studies demonstrate that the m.7472A>C is able to modify the expression of the m.7472Cins mutation and would suggest that it is not a neutral variant but appears to cause a biochemical defect by itself, confirming that homoplasmic mtDNA variants can modulate the phenotypic expression of pathogenic, heteroplasmic mtDNA mutations.
科研通智能强力驱动
Strongly Powered by AbleSci AI