函数逼近
离群值
非线性系统
趋同(经济学)
人工神经网络
噪音(视频)
计算机科学
模糊逻辑
一般化
聚类分析
功能(生物学)
人工智能
数学优化
算法
数学
数学分析
物理
量子力学
进化生物学
经济
图像(数学)
生物
经济增长
作者
Horng-Lin Shieh,Chin-Yun Bao
出处
期刊:International Conference on Machine Learning and Cybernetics
日期:2010-07-01
卷期号:36: 2962-2966
被引量:3
标识
DOI:10.1109/icmlc.2010.5580760
摘要
This paper proposes a new robust fuzzy CMAC algorithm for function approximation. The advantages of CMAC neural network are fast learning convergence, capable of mapping nonlinear functions quickly due to its local generalization of weight updating. In this paper, in order to overcome the problems of function approximation for a nonlinear system with noise and outliers, a robust fuzzy clustering method is proposed to greatly mitigate the influence of noise and outliers and then a new CMAC learning process used to learn the nonlinear system's features for function approximation.
科研通智能强力驱动
Strongly Powered by AbleSci AI