材料科学
表面改性
复合材料
碳纳米管
聚偏氟乙烯
纳米复合材料
弹性体
复合数
扫描电子显微镜
聚合物
色散(光学)
拉曼光谱
化学工程
光学
物理
工程类
摘要
Surface modification is a good way to improve the surface activity and interfacial strength of multiwalled carbon nanotubes (MWCNTs) when used as fillers in the polymer composites. Among the reported methods for nanotube modification, mixed acid oxidation and plasma treatment is often used by introducing polar groups to the sidewall of MWCNT successfully. The purpose of this study is to evaluate the effect of different surface modification of MWCNT on the mechanical property and electrical conductivity of Fluoro-elastomer (FE)/MWCNT nanocomposites. MWCNTs were surface modified by mixed oxidation and CF 4 plasma treatment and then used to reinforce the fluoro elastomer (FE, a copolymer of trifluorochloroethylene and polyvinylidene fluoride). FE/MWCNT composite films were prepared from mixture solutions of ethylacetate and butylacetate, using untreated CNTs (UCNTs), acid-modified CNTs (ACNTs), and CF 4 plasma-modified CNT (FCNTs). In each case, MWCNT content was 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% with respect to the polymer. Morphology and mechanical properties were characterized by using scanning electron microscopy (SEM), Raman spectroscopy, as well as dynamic mechanical tests. The SEM results indicated that dispersion of ACNTs and especially FCNTs in FE was better than that of UCNTs. DMA indicated mechanical properties of FCNT composites were improved over ACNT and UCNT filled FE. The resulting electrical properties of the composites ranged from dielectric behavior to bulk conductivities of 10 -2 Sm -1 and were found to depend strongly on the surface modification methods of MWCNTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI