Gaussian interaction profile kernels for predicting drug–target interaction

核(代数) 人工智能 机器学习 支持向量机 模式识别(心理学)
作者
Twan van Laarhoven,Sander B. Nabuurs,Elena Marchiori
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:27 (21): 3036-3043 被引量:670
标识
DOI:10.1093/bioinformatics/btr500
摘要

The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy.We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions.Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/.tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whandzxl发布了新的文献求助10
1秒前
jkwang完成签到,获得积分10
1秒前
3秒前
小尧完成签到,获得积分10
5秒前
wuludie应助Unlung采纳,获得10
6秒前
今后应助刘仁轨采纳,获得10
6秒前
little发布了新的文献求助10
6秒前
meng完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
10秒前
10秒前
36456657应助小白采纳,获得10
12秒前
粗犷的囧完成签到,获得积分10
12秒前
脑洞疼应助zdy采纳,获得10
13秒前
13秒前
14秒前
虞丹萱发布了新的文献求助50
14秒前
wzy4319完成签到,获得积分10
16秒前
16秒前
17秒前
陈博士完成签到,获得积分10
17秒前
17秒前
执执发布了新的文献求助10
19秒前
20秒前
MQ完成签到,获得积分20
20秒前
20秒前
20秒前
科研通AI5应助meng采纳,获得10
21秒前
MQ发布了新的文献求助10
22秒前
晶晶完成签到,获得积分10
23秒前
干净绮山发布了新的文献求助10
23秒前
数字生命发布了新的文献求助10
23秒前
陈博士发布了新的文献求助10
23秒前
诚心邑应助sparrow采纳,获得10
24秒前
沉静盼山完成签到,获得积分10
25秒前
石绿海发布了新的文献求助10
25秒前
田様应助贤yu采纳,获得10
25秒前
耍酷含芙完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978