Gaussian interaction profile kernels for predicting drug–target interaction

核(代数) 人工智能 机器学习 支持向量机 模式识别(心理学)
作者
Twan van Laarhoven,Sander B. Nabuurs,Elena Marchiori
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:27 (21): 3036-3043 被引量:670
标识
DOI:10.1093/bioinformatics/btr500
摘要

The in silico prediction of potential interactions between drugs and target proteins is of core importance for the identification of new drugs or novel targets for existing drugs. However, only a tiny portion of all drug-target pairs in current datasets are experimentally validated interactions. This motivates the need for developing computational methods that predict true interaction pairs with high accuracy.We show that a simple machine learning method that uses the drug-target network as the only source of information is capable of predicting true interaction pairs with high accuracy. Specifically, we introduce interaction profiles of drugs (and of targets) in a network, which are binary vectors specifying the presence or absence of interaction with every target (drug) in that network. We define a kernel on these profiles, called the Gaussian Interaction Profile (GIP) kernel, and use a simple classifier, (kernel) Regularized Least Squares (RLS), for prediction drug-target interactions. We test comparatively the effectiveness of RLS with the GIP kernel on four drug-target interaction networks used in previous studies. The proposed algorithm achieves area under the precision-recall curve (AUPR) up to 92.7, significantly improving over results of state-of-the-art methods. Moreover, we show that using also kernels based on chemical and genomic information further increases accuracy, with a neat improvement on small datasets. These results substantiate the relevance of the network topology (in the form of interaction profiles) as source of information for predicting drug-target interactions.Software and Supplementary Material are available at http://cs.ru.nl/~tvanlaarhoven/drugtarget2011/.tvanlaarhoven@cs.ru.nl; elenam@cs.ru.nl.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵苏程发布了新的文献求助10
刚刚
乐乐应助刘六采纳,获得10
1秒前
大个应助YufanZhang采纳,获得10
1秒前
1秒前
活力曼青完成签到,获得积分10
1秒前
2秒前
这瓜不卖发布了新的文献求助10
2秒前
Orange应助帅气蓝采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Akim应助寒冷黎云采纳,获得10
3秒前
4秒前
健忘远山完成签到 ,获得积分10
4秒前
hanleiharry1发布了新的文献求助10
5秒前
Channing_Ho完成签到 ,获得积分10
5秒前
eric888应助辛勤的诗蕊采纳,获得50
6秒前
6秒前
顺利毕业完成签到,获得积分10
6秒前
7秒前
科研小白完成签到,获得积分10
7秒前
Ava应助甜蜜花采纳,获得10
7秒前
上官若男应助Raza采纳,获得10
7秒前
8秒前
Ava应助眼睛大行云采纳,获得10
8秒前
9秒前
xue完成签到 ,获得积分10
9秒前
健忘丹珍完成签到,获得积分10
9秒前
9秒前
9秒前
坤坤蹦蹦跳跳完成签到,获得积分10
11秒前
害羞映容完成签到,获得积分10
11秒前
科研通AI6应助小亮哈哈采纳,获得10
11秒前
11秒前
11秒前
所所应助liriyii采纳,获得10
11秒前
核糖体完成签到,获得积分20
12秒前
13秒前
Lloignyth完成签到,获得积分10
13秒前
赵苏程完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978