Soil depth estimation through soil-landscape modelling using regression kriging in a Himalayan terrain

克里金 地形 估计 回归分析 数字土壤制图 回归 地质统计学 土壤科学 地理 环境科学 自然地理学 地质学 水文学(农业) 地图学 空间变异性 土壤图 土壤水分 统计 数学 岩土工程 经济 管理
作者
Suman Sarkar,Archana Roy,Tapas R. Martha
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:27 (12): 2436-2454 被引量:24
标识
DOI:10.1080/13658816.2013.814780
摘要

AbstractSoil formation depends upon several factors such as parent material, soil biota, topography and climate. It is difficult to use conventional soil survey methods for mapping the depth of soil in complex mountainous terrains. In this context, the present study aimed to estimate the soil depth for a large area (330.35 km2) using different geo-environmental factors through a soil-landscape regression kriging (RK) model in the Darjeeling Himalayas. RK with seven predictor variables such as elevation, slope, aspect, general curvature, topographic wetness index, distance from the streams and land use, was used to estimate the soil depth. While topographic parameters were derived from an 8-m resolution digital elevation model, the ortho-rectified Cartosat-1 satellite image was used to prepare the land use map. Soil depth measured at 148 sites within the study area was used to calibrate and validate the RK model. The result showed that the RK model with the seven predictors could explain 67% spatial variability of soil depth with a prediction variance between 0.23 and 0.42 m at the test site. In the regression analysis, land use (0.133) and slope (–0.016) were identified as significant determinants of soil depth. The prediction map showed higher soil depth in south-facing slopes and near valleys in comparison to other areas. Mean, mean absolute and root mean-square errors were used to access the reliability of the prediction, which indicated a goodness-of-fit of the RK model.Keywords: Darjeeling Himalayasdigital elevation modelregression krigingsoil depth AcknowledgementsThe first author is thankful to University Grants Commission (UGC), New Delhi, India for providing the fellowship to carry out the research work. He is also thankful to Dr. Edwin and his family for their support during field work.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lmm完成签到,获得积分10
2秒前
我的昵称发布了新的文献求助10
5秒前
delete完成签到,获得积分10
9秒前
风雨潇湘应助六妜采纳,获得10
10秒前
舒心的雍发布了新的文献求助10
15秒前
科研通AI6.2应助我的昵称采纳,获得10
16秒前
17秒前
独特代桃发布了新的文献求助10
23秒前
甜茶完成签到,获得积分10
26秒前
英俊的铭应助qqq采纳,获得10
30秒前
小马甲应助YDCPUEX采纳,获得10
32秒前
35秒前
cai完成签到 ,获得积分10
40秒前
lmm发布了新的文献求助10
41秒前
感动的白梅完成签到 ,获得积分10
42秒前
能干巨人完成签到,获得积分10
44秒前
无奈妖妖完成签到,获得积分10
49秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
52秒前
情怀应助科研通管家采纳,获得10
52秒前
田様应助科研通管家采纳,获得10
52秒前
小小应助科研通管家采纳,获得10
52秒前
隐形曼青应助科研通管家采纳,获得10
52秒前
共享精神应助科研通管家采纳,获得10
52秒前
ww完成签到 ,获得积分10
52秒前
52秒前
53秒前
嘉熙完成签到,获得积分10
53秒前
拼搏慕儿完成签到 ,获得积分10
58秒前
1分钟前
彩色的荔枝完成签到 ,获得积分10
1分钟前
笑看浮华发布了新的文献求助10
1分钟前
鱼儿游啊游完成签到,获得积分10
1分钟前
1分钟前
青鸟飞鱼完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852158
求助须知:如何正确求助?哪些是违规求助? 6276424
关于积分的说明 15627774
捐赠科研通 4968051
什么是DOI,文献DOI怎么找? 2678889
邀请新用户注册赠送积分活动 1623146
关于科研通互助平台的介绍 1579507