Zn1–xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity

醋酸镉 光催化 硫脲 制氢 试剂 水溶液 材料科学 可见光谱 固溶体 微晶 带隙 无机化学 催化作用 化学 物理化学 有机化学 冶金 光电子学
作者
Qin Li,Huan Meng,Peng Zhou,Yingqiu Zheng,Juan Wang,Jiaguo Yu,Jian‐Ru Gong
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:3 (5): 882-889 被引量:636
标识
DOI:10.1021/cs4000975
摘要

Photocatalytic hydrogen (H2) production from water splitting under visible-light irradiation is considered to be an attractive way to solve the increasing global energy crises in modern life. In this study, highly efficient photocatalytic H2 production without the assistant of a cocatalyst was achieved using Zn11–xCdxS solid solutions as the visible-light-driven photocatalysts and a mixed Na2S and Na2SO3 aqueous solution as the sacrificial reagent. The Zn1–xCdxS samples were prepared by a simple zinc–cadmium–thiourea (Zn–Cd–Tu) complex thermolysis method using thiourea, zinc acetate (Zn(Ac)2), and cadmium acetate (Cd(Ac)2) as the precursors. The obtained Zn1–xCdxS solid solutions feature a small crystallite size and precisely controllable band structure, which are beneficial for the photocatalysis. When the Zn/Cd molar ratio is 1:1, the prepared Zn0.5Cd0.5S sample exhibits the highest H2-production rate of 7.42 mmol·h–1·g–1, exceeding that of the pure CdS and ZnS samples by more than 24 and 54 times, respectively, and even much higher than that of the optimal Pt-loaded CdS. This high photocatalytic H2-production activity is attributed predominantly to enough visible-light absorption capacity and suitable conduction band potential of the Zn0.5Cd0.5S solid solution, which is further evidenced from the related theory calculations on the band structures of the Zn1–xCdxS solid solutions. Moreover, the calculation on the Mulliken populations of Zn, Cd, and S atoms for the first time provides new insight into the deep understanding of the chemical shifts of element binding energies for the Zn1–xCdxS solid solutions and the designing of new ternary photocatalytic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
罗攀发布了新的文献求助10
1秒前
1秒前
1秒前
luo完成签到,获得积分10
3秒前
羽安发布了新的文献求助10
3秒前
科研通AI2S应助lyy采纳,获得10
3秒前
4秒前
4秒前
laber应助零可林采纳,获得50
6秒前
6秒前
lcc发布了新的文献求助10
6秒前
6秒前
tiffany发布了新的文献求助10
7秒前
木木完成签到,获得积分10
7秒前
7秒前
8秒前
丰富的不惜完成签到,获得积分10
8秒前
聪明的你完成签到,获得积分10
8秒前
8秒前
银鱼在游发布了新的文献求助10
9秒前
comz完成签到,获得积分10
9秒前
lalatrouble完成签到,获得积分10
9秒前
小薛发布了新的文献求助10
10秒前
mirror完成签到,获得积分10
11秒前
Patience发布了新的文献求助30
11秒前
阿米发布了新的文献求助10
12秒前
希望天下0贩的0应助lcc采纳,获得10
12秒前
13秒前
13秒前
打打应助JLLLLLLLL采纳,获得10
13秒前
y13333完成签到,获得积分10
14秒前
14秒前
bhkwxdxy完成签到,获得积分10
16秒前
16秒前
不安海蓝完成签到,获得积分10
16秒前
大个应助Dskelf采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
饼干发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858