Standard Plane Localization in Ultrasound by Radial Component Model and Selective Search

人工智能 计算机科学 超声波 随机森林 脐静脉 计算机视觉 组分(热力学) 钥匙(锁) 模式识别(心理学) 放射科 医学 物理 生物 热力学 生物化学 计算机安全 体外
作者
Dong Ni,Xin Yang,Xin Chen,Chien-Ting Chin,Siping Chen,Pheng‐Ann Heng,Shengli Li,Jing Qin,Tianfu Wang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:40 (11): 2728-2742 被引量:63
标识
DOI:10.1016/j.ultrasmedbio.2014.06.006
摘要

Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala给lalala的求助进行了留言
刚刚
田様应助踏实的诗筠采纳,获得10
刚刚
大东子完成签到,获得积分10
2秒前
白白白发布了新的文献求助10
4秒前
霜打了的葡萄应助hefang采纳,获得10
4秒前
4秒前
5秒前
CXY完成签到,获得积分10
7秒前
8秒前
tll发布了新的文献求助10
9秒前
科研通AI2S应助ZX801采纳,获得20
9秒前
9秒前
CipherSage应助风卷云淡采纳,获得10
11秒前
哈哈哈哈发布了新的文献求助10
11秒前
传奇3应助lalala采纳,获得30
11秒前
机灵的煎蛋完成签到 ,获得积分10
12秒前
小蘑菇应助hshsh采纳,获得10
13秒前
猫猫叹气发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
wangruize发布了新的文献求助10
15秒前
16秒前
在水一方应助刘龙强采纳,获得10
16秒前
16秒前
16秒前
蝌蚪完成签到,获得积分10
18秒前
小二郎应助Accepted采纳,获得10
19秒前
Shirley关注了科研通微信公众号
19秒前
zwd发布了新的文献求助10
19秒前
myself发布了新的文献求助10
20秒前
Lee发布了新的文献求助10
20秒前
Henry完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
猫猫叹气完成签到 ,获得积分20
24秒前
博利完成签到,获得积分10
24秒前
hshsh发布了新的文献求助10
25秒前
夏天无发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157630
求助须知:如何正确求助?哪些是违规求助? 2808948
关于积分的说明 7879413
捐赠科研通 2467414
什么是DOI,文献DOI怎么找? 1313449
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919