Standard Plane Localization in Ultrasound by Radial Component Model and Selective Search

人工智能 计算机科学 超声波 随机森林 脐静脉 计算机视觉 组分(热力学) 钥匙(锁) 模式识别(心理学) 放射科 医学 物理 生物 计算机安全 体外 热力学 生物化学
作者
Dong Ni,Xin Yang,Xin Chen,Chien-Ting Chin,Siping Chen,Pheng‐Ann Heng,Shengli Li,Jing Qin,Tianfu Wang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:40 (11): 2728-2742 被引量:63
标识
DOI:10.1016/j.ultrasmedbio.2014.06.006
摘要

Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助派大星采纳,获得30
2秒前
3秒前
可爱的函函应助Rita采纳,获得10
3秒前
3秒前
4秒前
yangcong发布了新的文献求助10
4秒前
yydragen应助学术渣渣采纳,获得30
9秒前
Muhammad发布了新的文献求助10
10秒前
yatou327完成签到,获得积分10
10秒前
12秒前
miao发布了新的文献求助10
12秒前
苏苏发布了新的文献求助10
13秒前
汉堡包应助学术混子采纳,获得10
15秒前
shimly0101xx发布了新的文献求助10
17秒前
阿珊完成签到,获得积分10
18秒前
Ki_Ayasato发布了新的文献求助150
19秒前
大模型应助北夏采纳,获得10
20秒前
cuber完成签到 ,获得积分10
21秒前
21秒前
XXJ发布了新的文献求助10
22秒前
科目三应助桀桀桀采纳,获得10
22秒前
shimly0101xx完成签到,获得积分10
24秒前
24秒前
Rondab应助好滴捏采纳,获得10
24秒前
泡泡鱼完成签到 ,获得积分10
25秒前
26秒前
27秒前
儒雅涵易完成签到 ,获得积分10
27秒前
28秒前
幽默的绣连完成签到,获得积分20
29秒前
Muhammad发布了新的文献求助10
30秒前
lzx发布了新的文献求助10
30秒前
congenialboy发布了新的文献求助10
30秒前
爆米花应助XXJ采纳,获得10
31秒前
张雯思发布了新的文献求助10
32秒前
32秒前
Lucas应助精明怜南采纳,获得10
33秒前
34秒前
派大星发布了新的文献求助30
36秒前
wterry26发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176