S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures

非共价相互作用 计算机科学 水准点(测量) 离解(化学) 参数化(大气建模) 量子化学 集合(抽象数据类型) 可扩展性 统计物理学 计算化学 化学 物理 分子 数据库 量子力学 物理化学 超分子化学 氢键 大地测量学 辐射传输 程序设计语言 地理
作者
Jan Řezáč,Kevin E. Riley,Pavel Hobza
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:7 (8): 2427-2438 被引量:914
标识
DOI:10.1021/ct2002946
摘要

With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薄荷完成签到 ,获得积分10
刚刚
luolidou发布了新的文献求助10
1秒前
还单身的代亦完成签到,获得积分20
3秒前
CyrusSo524应助shenshi采纳,获得10
5秒前
CyrusSo524应助虎皮蛋堡采纳,获得10
8秒前
汉堡包应助无言务实采纳,获得10
8秒前
11秒前
震动的宛丝完成签到,获得积分10
12秒前
充电宝应助香辣鸡腿堡采纳,获得10
12秒前
12秒前
13秒前
mt13完成签到,获得积分10
15秒前
zzy发布了新的文献求助10
15秒前
单薄熊猫应助咕嘟咕嘟采纳,获得10
15秒前
orixero应助咕嘟咕嘟采纳,获得10
15秒前
猪猪hero应助咕嘟咕嘟采纳,获得10
15秒前
云瑾应助咕嘟咕嘟采纳,获得10
15秒前
来日可追应助咕嘟咕嘟采纳,获得10
15秒前
希音知聏应助咕嘟咕嘟采纳,获得10
16秒前
英姑应助咕嘟咕嘟采纳,获得10
16秒前
小马甲应助咕嘟咕嘟采纳,获得10
16秒前
科研通AI2S应助咕嘟咕嘟采纳,获得10
16秒前
16秒前
JamesPei应助科研人采纳,获得10
16秒前
16秒前
17秒前
斯文败类应助lxy采纳,获得10
19秒前
Crystal发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
樊鸿桥发布了新的文献求助10
21秒前
略略发布了新的文献求助10
21秒前
慕青应助惘然采纳,获得30
21秒前
22秒前
香蕉如曼发布了新的文献求助10
22秒前
科研人完成签到,获得积分10
22秒前
23秒前
明理东蒽发布了新的文献求助10
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Plant–Pollinator Interactions: From Specialization to Generalization 400
Cai Yuanpei y la educación en la República de China (1912-1949) 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589192
求助须知:如何正确求助?哪些是违规求助? 3157537
关于积分的说明 9515546
捐赠科研通 2860379
什么是DOI,文献DOI怎么找? 1571777
邀请新用户注册赠送积分活动 737421
科研通“疑难数据库(出版商)”最低求助积分说明 722293