微粒体
化学
细胞色素P450
去甲基化
药理学
生物化学
酶
生物
基因表达
DNA甲基化
基因
作者
R. Scott Obach,John Pablo,Deborah C. Mash
出处
期刊:PubMed
日期:1998-08-01
卷期号:26 (8): 764-8
被引量:39
摘要
Ibogaine is a psychoactive alkaloid that possesses potential as an agent to treat opiate and cocaine addiction. The primary metabolite arises via O-demethylation at the 12-position to yield 12-hydroxyibogamine. In this report, evidence is presented that the O-demethylation of ibogaine observed in human hepatic microsomes is catalyzed primarily by the polymorphically expressed cytochrome P-4502D6 (CYP2D6). An enzyme kinetic examination of ibogaine O-demethylase activity in pooled human liver microsomes suggested that two (or more) enzymes are involved in this reaction: one with a low KMapp (1.1 microM) and the other with a high KMapp (>200 microM). The low KMapp activity comprised >95% of total intrinsic clearance. Human liver microsomes from three individual donors demonstrated similar enzyme kinetic parameters (mean KMapp = 0.55 +/- 0.09 microM and 310 +/- 10 microM for low and high KM activities, respectively). However, a fourth human microsome sample that appeared to be a phenotypic CYP2D6 poor metabolizer possessed only the high KMapp activity. In hepatic microsomes from a panel of human donors, the low KMapp ibogaine O-demethylase activity correlated with CYP2D6-catalyzed bufuralol 1'-hydroxylase activity but not with other P450 isoform-specific activities. Quinidine, a CYP2D6-specific inhibitor, inhibited ibogaine O-demethylase (IC50 = 0.2 microM), whereas other P450 isoform-specific inhibitors did not inhibit this activity. Also, of a battery of recombinant heterologously expressed human P450 isoforms, only rCYP2D6 possessed significant ibogaine O-demethylase activity. Thus, it is concluded that ibogaine O-demethylase is catalyzed by CYP2D6 and that this isoform is the predominant enzyme of ibogaine O-demethylation in humans. The potential pharmacological implications of these findings are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI