模式识别(心理学)
人工智能
特征提取
隐马尔可夫模型
断裂(地质)
离散余弦变换
计算机科学
特征(语言学)
数学
图像(数学)
工程类
语言学
哲学
岩土工程
作者
Yong Liang Zhang,Li Gao,Ling Li
出处
期刊:Advanced Materials Research
日期:2011-08-01
卷期号:311-313: 970-973
被引量:1
标识
DOI:10.4028/www.scientific.net/amr.311-313.970
摘要
Fracture images automatic classification and recognition is an important one of fracture failure intelligent diagnosis, and in which feature extraction is a key issue. In this paper, fractional cosine transform, which is a useful time-frequency analysis method, is used in feature extraction of fracture images, and then the classification of fatigue, dimples, intergranular and cleavage is performed by Hidden markov model (HMM). For metal fracture images classification, experiment shows that fractional cosine transform is better than the cosine transform in fracture images feature description, and the correct recognition rate can be achieved 98.8% based on HMM classification mode
科研通智能强力驱动
Strongly Powered by AbleSci AI