Quantitative Structure–Retention Relationship Models To Support Nontarget High-Resolution Mass Spectrometric Screening of Emerging Contaminants in Environmental Samples

污染 高分辨率 环境化学 色谱法 分辨率(逻辑) 计算机科学 人工智能 化学 环境科学 遥感 地理 生态学 生物
作者
Reza Aalizadeh,Νikolaos S. Τhomaidis,Anna A. Bletsou,Pablo Gago-Ferrero
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:56 (7): 1384-1398 被引量:112
标识
DOI:10.1021/acs.jcim.5b00752
摘要

Over the past decade, the application of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) has been growing extensively due to its ability to analyze a wide range of suspected and unknown compounds in environmental samples. However, various criteria, such as mass accuracy and isotopic pattern of the precursor ion, MS/MS spectra evaluation, and retention time plausibility, should be met to reach a certain identification confidence. In this context, a comprehensive workflow based on computational tools was developed to understand the retention time behavior of a large number of compounds belonging to emerging contaminants. Two extensive data sets were built for two chromatographic systems, one for positive and one for negative electrospray ionization mode, containing information for the retention time of 528 and 298 compounds, respectively, to expand the applicability domain of the developed models. Then, the data sets were split into training and test set, employing k-nearest neighborhood clustering, to build and validate the models' internal and external prediction ability. The best subset of molecular descriptors was selected using genetic algorithms. Multiple linear regression, artificial neural networks, and support vector machines were used to correlate the selected descriptors with the experimental retention times. Several validation techniques were used, including Golbraikh–Tropsha acceptable model criteria, Euclidean based applicability domain, modified correlation coefficient (rm2), and concordance correlation coefficient values, to measure the accuracy and precision of the models. The best linear and nonlinear models for each data set were derived and used to predict the retention time of suspect compounds of a wide-scope survey, as the evaluation data set. For the efficient outlier detection and interpretation of the origin of the prediction error, a novel procedure and tool was developed and applied, enabling us to identify if the suspect compound was in the applicability domain or not.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助杨yy采纳,获得10
1秒前
1秒前
英姑应助晓Wu采纳,获得10
2秒前
3秒前
Han完成签到,获得积分20
4秒前
5秒前
6秒前
lx33101128发布了新的文献求助10
7秒前
9秒前
Han发布了新的文献求助10
11秒前
15秒前
科研通AI2S应助JF123_采纳,获得10
15秒前
Soso完成签到,获得积分10
16秒前
隐形曼青应助大气的谷梦采纳,获得10
17秒前
方羽应助想毕业的马涛采纳,获得30
20秒前
22秒前
在水一方应助言叶采纳,获得10
23秒前
24秒前
莹亮的星空完成签到,获得积分0
26秒前
畅快的荠发布了新的文献求助10
27秒前
28秒前
30秒前
32秒前
33秒前
徐妙菱发布了新的文献求助10
33秒前
34秒前
言叶发布了新的文献求助10
35秒前
wdxmo完成签到,获得积分10
36秒前
研友_8Wz5MZ发布了新的文献求助10
37秒前
无限子轩完成签到,获得积分10
37秒前
38秒前
heavenhorse应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
wdxmo发布了新的文献求助10
39秒前
畅快的荠完成签到,获得积分10
41秒前
有人应助hahahahahe采纳,获得10
41秒前
42秒前
逆时针完成签到,获得积分10
43秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391626
求助须知:如何正确求助?哪些是违规求助? 3002669
关于积分的说明 8805116
捐赠科研通 2689361
什么是DOI,文献DOI怎么找? 1473071
科研通“疑难数据库(出版商)”最低求助积分说明 681334
邀请新用户注册赠送积分活动 674200