Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer

钝化 材料科学 能量转换效率 光电子学 图层(电子) 量子点 开路电压 太阳能电池 纳米技术 电压 电气工程 工程类
作者
Fei Huang,Juan Hou,Qifeng Zhang,Yuan Wang,Robert Massé,Shanglong Peng,Huanli Wang,Jianshe Liu,Guozhong Cao
出处
期刊:Nano Energy [Elsevier]
卷期号:26: 114-122 被引量:116
标识
DOI:10.1016/j.nanoen.2016.05.012
摘要

The surface passivation layer in quantum dot sensitized solar cells (QDSSCs) plays a very important role in preventing surface charge recombination and, thus, improving the power conversion efficiency. The present study demonstrated the introduction of a ZnSe passivation layer prepared with a successive ionic layer absorption and reaction (SILAR) method in CdS/CdSe co-sensitized solar cells, though not likely in the ideal form of a conformal overlayer, have significantly enhanced the power conversion efficiency, which was found to be far more efficient than the most widely used ZnS passivation layer. Not only can the ZnSe passivation layer reduce surface charge recombination, but can also enhance the light harvesting. The short-circuit current density, open-circuit voltage, fill factor, and the corresponding photovoltaic conversion efficiency were all significantly improved with the introduction of a ZnSe passivation layer but varied appreciably with the layer thickness. When three SILAR cycle layer was applied, the power conversion efficiency is as high as 6.4%, which is almost doubled the efficiency of 3.4% for the solar cell without ZnSe passivation layer. For the comparison, the CdS/CdSe co-sensitized solar cells with optimum ZnS passivation layer was also fabricated, which generated a power conversion efficiency of 4.9%, much lower than 6.4% of ZnSe passivated QDSSCs. This work demonstrated that ZnSe would be a good alternative to ZnS as a passivation material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Khr1stINK采纳,获得10
刚刚
刚刚
刚刚
考博圣体完成签到,获得积分10
1秒前
gf完成签到,获得积分10
1秒前
Tsuki完成签到 ,获得积分10
1秒前
小马甲应助平淡的白云采纳,获得10
1秒前
冷月寒寒大魔王完成签到,获得积分20
1秒前
1秒前
今后应助雪松采纳,获得10
2秒前
2秒前
鲸鱼发布了新的文献求助10
2秒前
2秒前
爆米花应助干净冬莲采纳,获得10
2秒前
2秒前
3秒前
3秒前
quan发布了新的文献求助10
3秒前
叮当完成签到,获得积分20
3秒前
3秒前
4秒前
云野华完成签到,获得积分10
4秒前
ysd完成签到,获得积分10
4秒前
emmaguo713完成签到,获得积分10
4秒前
4秒前
诚心寄灵发布了新的文献求助10
4秒前
τ涛发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Tammy发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
标致的坤完成签到,获得积分10
6秒前
6秒前
梅子甜酒发布了新的文献求助10
6秒前
响彻云霄发布了新的文献求助10
6秒前
xh96发布了新的文献求助10
7秒前
7秒前
X_X发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482