Comparing Network-Centric and Power Flow Models for the Optimal Allocation of Link Capacities in a Cascade-Resilient Power Transmission Network

计算机科学 数学优化 级联 级联故障 传输(电信) 弹性(材料科学) 可扩展性 功率(物理) 电力系统 分布式计算 工程类 数学 数据库 热力学 电信 物理 量子力学 化学工程
作者
Yi‐Ping Fang,Nicola Pedroni,Enrico Zio
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 1632-1643 被引量:30
标识
DOI:10.1109/jsyst.2014.2352152
摘要

In this paper, we tackle the problem of searching for the most favorable pattern of link capacity allocation that makes a power transmission network resilient to cascading failures with limited investment costs. This problem is formulated within a combinatorial multiobjective optimization framework and tackled by evolutionary algorithms. Two different models of increasing complexity are used to simulate cascading failures in a network and quantify its resilience: a complex network model [namely, the Motter-Lai (ML) model] and a more detailed and computationally demanding power flow model [namely, the ORNL-Pserc-Alaska (OPA) model]. Both models are tested and compared in a case study involving the 400-kV French power transmission network. The results show that cascade-resilient networks tend to have a nonlinear capacity-load relation: In particular, heavily loaded components have smaller unoccupied portions of capacity, whereas lightly loaded links present larger unoccupied portions of capacity (which is in contrast with the linear capacity-load relation hypothesized in previous works of literature). Most importantly, the optimal solutions obtained using the ML and OPA models exhibit consistent characteristics in terms of phrase transitions in the Pareto fronts and link capacity allocation patterns. These results provide incentive for the use of computationally cheap network-centric models for the optimization of cascade-resilient power network systems, given the advantages of their simplicity and scalability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yolo发布了新的文献求助10
1秒前
Lingkoi发布了新的文献求助10
1秒前
1秒前
小破仁发布了新的文献求助10
1秒前
儒雅的笑卉完成签到,获得积分10
2秒前
2秒前
漂流的小海龟完成签到,获得积分10
3秒前
香蕉觅云应助hhxtm采纳,获得10
3秒前
飞快的羊青完成签到,获得积分10
3秒前
俭朴短靴完成签到,获得积分10
3秒前
PanLi发布了新的文献求助30
3秒前
3秒前
wanci应助wangyu采纳,获得10
3秒前
亭亦完成签到,获得积分10
4秒前
4秒前
llyyff发布了新的文献求助10
4秒前
Ava应助wsysweet采纳,获得10
4秒前
调皮蛋完成签到,获得积分10
4秒前
kento应助cgshao采纳,获得50
4秒前
123完成签到,获得积分10
5秒前
LyIwEN完成签到,获得积分10
5秒前
6秒前
农夫果园完成签到,获得积分10
6秒前
赵先生发布了新的文献求助10
6秒前
壶十二完成签到,获得积分10
7秒前
7秒前
8秒前
QYSF222发布了新的文献求助10
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106