Comparing Network-Centric and Power Flow Models for the Optimal Allocation of Link Capacities in a Cascade-Resilient Power Transmission Network

计算机科学 数学优化 级联 级联故障 传输(电信) 弹性(材料科学) 可扩展性 功率(物理) 电力系统 分布式计算 工程类 数学 数据库 热力学 电信 物理 量子力学 化学工程
作者
Yi‐Ping Fang,Nicola Pedroni,Enrico Zio
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 1632-1643 被引量:30
标识
DOI:10.1109/jsyst.2014.2352152
摘要

In this paper, we tackle the problem of searching for the most favorable pattern of link capacity allocation that makes a power transmission network resilient to cascading failures with limited investment costs. This problem is formulated within a combinatorial multiobjective optimization framework and tackled by evolutionary algorithms. Two different models of increasing complexity are used to simulate cascading failures in a network and quantify its resilience: a complex network model [namely, the Motter-Lai (ML) model] and a more detailed and computationally demanding power flow model [namely, the ORNL-Pserc-Alaska (OPA) model]. Both models are tested and compared in a case study involving the 400-kV French power transmission network. The results show that cascade-resilient networks tend to have a nonlinear capacity-load relation: In particular, heavily loaded components have smaller unoccupied portions of capacity, whereas lightly loaded links present larger unoccupied portions of capacity (which is in contrast with the linear capacity-load relation hypothesized in previous works of literature). Most importantly, the optimal solutions obtained using the ML and OPA models exhibit consistent characteristics in terms of phrase transitions in the Pareto fronts and link capacity allocation patterns. These results provide incentive for the use of computationally cheap network-centric models for the optimization of cascade-resilient power network systems, given the advantages of their simplicity and scalability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾路完成签到,获得积分10
2秒前
前行的灿发布了新的文献求助10
3秒前
3秒前
爱喝佳得乐完成签到,获得积分10
5秒前
酷波er应助程天佑采纳,获得10
9秒前
9秒前
fenglin4620完成签到,获得积分10
11秒前
12秒前
直率惜文完成签到,获得积分10
15秒前
why911发布了新的文献求助10
16秒前
今后应助lxwwwxl采纳,获得10
18秒前
慕青应助小小的苹果采纳,获得10
20秒前
小李李完成签到,获得积分10
21秒前
21秒前
22秒前
芥楠完成签到,获得积分10
22秒前
23秒前
24秒前
科研通AI6应助liu采纳,获得10
27秒前
28秒前
29秒前
30秒前
31秒前
LLL发布了新的文献求助10
32秒前
程天佑发布了新的文献求助10
36秒前
友好天蓝发布了新的文献求助50
36秒前
朴素的士晋完成签到 ,获得积分10
36秒前
天真若云完成签到,获得积分10
37秒前
ivy完成签到,获得积分10
39秒前
虚心的白莲完成签到,获得积分10
39秒前
搜集达人应助尘默采纳,获得20
39秒前
秀丽奎完成签到 ,获得积分10
40秒前
越明年完成签到,获得积分10
40秒前
41秒前
42秒前
王振兴完成签到 ,获得积分10
43秒前
ivy发布了新的文献求助10
43秒前
baidi发布了新的文献求助10
46秒前
gfsuen完成签到 ,获得积分10
46秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841