离子液体
电极
微分电容
化学
酰亚胺
电容
离子
分析化学(期刊)
石墨
工作职能
材料科学
物理化学
高分子化学
有机化学
催化作用
作者
Jenel Vatamanu,Oleg Borodin,Grant D. Smith
摘要
Molecular dynamics simulations were performed on N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (pyr(13)FSI) room temperature ionic liquid (RTIL) confined between graphite electrodes as a function of applied potential at 393 and 453 K using an accurate force field developed in this work. The electric double layer (EDL) structure and differential capacitance (DC) of pyr(13)FSI was compared with the results of the previous study of a similar RTIL pyr(13)bis(trifluoromethanesulfonyl)imide (pyr(13)TFSI) with a significantly larger anion [ Vatamanu, J.; Borodin, O.; Smith, G. D. J. Am. Chem. Soc. 2010, 132, 14825]. Intriguingly, the smaller size of the FSI anion compared to TFSI did not result in a significant increase of the DC on the positive electrode. Instead, a 30% higher DC was observed on the negative electrode for pyr(13)FSI compared to pyr(13)TFSI. The larger DC observed on the negative electrode for pyr(13)FSI compared to pyr(13)TFSI was associated with two structural features of the EDL: (a) a closer approach of FSI compared to TFSI to the electrode surface and (b) a faster rate (vs potential decrease) of anion desorption from the electrode surface for FSI compared to TFSI. Additionally, the limiting behavior of DC at large applied potentials was investigated. Finally, we show that constant potential simulations indicate time scales of hundreds of picoseconds required for electrode charge/discharge and EDL formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI