NP-StructurePredictor: Prediction of Unknown Natural Products in Plant Mixtures

化学 人工智能 计算机科学
作者
Yeu‐Chern Harn,Bo‐Han Su,Yuan‐Ling Ku,Olivia A. Lin,Cheng‐Fu Chou,Yufeng Jane Tseng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (12): 3138-3148 被引量:6
标识
DOI:10.1021/acs.jcim.7b00565
摘要

Identification of the individual chemical constituents of a mixture, especially solutions extracted from medicinal plants, is a time-consuming task. The identification results are often limited by challenges such as the development of separation methods and the availability of known reference standards. A novel structure elucidation system, NP-StructurePredictor, is presented and used to accelerate the process of identifying chemical structures in a mixture based on a branch and bound algorithm combined with a large collection of natural product databases. NP-StructurePredictor requires only targeted molecular weights calculated from a list of m/z values from liquid chromatography-mass spectrometry (LC-MS) experiments as input information to predict the chemical structures of individual components matching the weights in a mixture. NP-StructurePredictor also provides the predicted structures with statistically calculated probabilities so that the most likely chemical structures of the natural products and their analogs can be proposed accordingly. Four data sets consisting of different Chinese herbs with mixtures containing known compounds were selected for validation studies, and all their components were correctly identified and highly predicted using NP-StructurePredictor. NP-StructurePredictor demonstrated its applicability for predicting the chemical structures of novel compounds by returning highly accurate results from four different validation case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
coco发布了新的文献求助10
1秒前
香蕉觅云应助雪山采纳,获得10
1秒前
石头完成签到,获得积分10
1秒前
烟花应助认真的孤风采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
爱笑雨竹完成签到,获得积分10
1秒前
思源应助LaTeXer采纳,获得10
2秒前
2秒前
科研通AI6应助我爱乒乓球采纳,获得10
2秒前
3秒前
dingdingding发布了新的文献求助10
4秒前
77发布了新的文献求助10
4秒前
5秒前
害羞雨南完成签到,获得积分10
5秒前
huangxq完成签到,获得积分10
5秒前
5秒前
Akim应助淡然篮球采纳,获得10
5秒前
所所应助缥缈的青旋采纳,获得10
5秒前
科研通AI6应助徐zhipei采纳,获得30
5秒前
替罗非班发布了新的文献求助10
5秒前
myp完成签到,获得积分10
5秒前
lzx666发布了新的文献求助10
6秒前
6秒前
昱旻完成签到 ,获得积分10
6秒前
Akim应助香蕉静芙采纳,获得10
6秒前
7秒前
7秒前
昵称发布了新的文献求助10
7秒前
研友_VZG7GZ应助JI采纳,获得20
8秒前
Dean应助yydsyyd采纳,获得50
8秒前
追寻的访烟完成签到,获得积分10
8秒前
李哈哈发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
Persist完成签到,获得积分10
10秒前
在水一方应助紫罗兰花海采纳,获得10
10秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437