NP-StructurePredictor: Prediction of Unknown Natural Products in Plant Mixtures

化学 人工智能 计算机科学
作者
Yeu‐Chern Harn,Bo‐Han Su,Yuan‐Ling Ku,Olivia A. Lin,Cheng‐Fu Chou,Yufeng Jane Tseng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (12): 3138-3148 被引量:6
标识
DOI:10.1021/acs.jcim.7b00565
摘要

Identification of the individual chemical constituents of a mixture, especially solutions extracted from medicinal plants, is a time-consuming task. The identification results are often limited by challenges such as the development of separation methods and the availability of known reference standards. A novel structure elucidation system, NP-StructurePredictor, is presented and used to accelerate the process of identifying chemical structures in a mixture based on a branch and bound algorithm combined with a large collection of natural product databases. NP-StructurePredictor requires only targeted molecular weights calculated from a list of m/z values from liquid chromatography-mass spectrometry (LC-MS) experiments as input information to predict the chemical structures of individual components matching the weights in a mixture. NP-StructurePredictor also provides the predicted structures with statistically calculated probabilities so that the most likely chemical structures of the natural products and their analogs can be proposed accordingly. Four data sets consisting of different Chinese herbs with mixtures containing known compounds were selected for validation studies, and all their components were correctly identified and highly predicted using NP-StructurePredictor. NP-StructurePredictor demonstrated its applicability for predicting the chemical structures of novel compounds by returning highly accurate results from four different validation case studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk雯完成签到,获得积分20
刚刚
dx发布了新的文献求助30
1秒前
Attract发布了新的文献求助10
1秒前
夏日完成签到,获得积分10
2秒前
仁爱妙菱发布了新的文献求助10
2秒前
jl发布了新的文献求助10
3秒前
Ship发布了新的文献求助10
3秒前
科研通AI6应助wzt采纳,获得10
3秒前
4秒前
jwc0558完成签到,获得积分10
4秒前
key_girl完成签到,获得积分10
5秒前
秋秋发布了新的文献求助10
5秒前
6秒前
凡凡发布了新的文献求助10
8秒前
JamesPei应助小柒采纳,获得10
8秒前
小马甲应助jwc0558采纳,获得10
9秒前
田様应助123采纳,获得10
9秒前
zse完成签到 ,获得积分10
9秒前
秋秋完成签到,获得积分10
11秒前
11秒前
11秒前
落落完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
14秒前
XX发布了新的文献求助10
14秒前
可爱的函函应助Yuanyuan采纳,获得10
14秒前
xiaolaoshuboshi应助清茶采纳,获得10
14秒前
15秒前
彭于晏应助曾经山兰采纳,获得10
15秒前
曾雨完成签到,获得积分10
15秒前
16秒前
16秒前
HYY发布了新的文献求助10
16秒前
旦皋完成签到,获得积分10
16秒前
大大发布了新的文献求助10
17秒前
17秒前
18秒前
ding应助天才包采纳,获得10
19秒前
Hello应助小方采纳,获得10
19秒前
CipherSage应助愤怒的如天采纳,获得10
19秒前
通行证发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175