NP-StructurePredictor: Prediction of Unknown Natural Products in Plant Mixtures

化学 人工智能 计算机科学
作者
Yeu‐Chern Harn,Bo‐Han Su,Yuan‐Ling Ku,Olivia A. Lin,Cheng‐Fu Chou,Yufeng Jane Tseng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (12): 3138-3148 被引量:6
标识
DOI:10.1021/acs.jcim.7b00565
摘要

Identification of the individual chemical constituents of a mixture, especially solutions extracted from medicinal plants, is a time-consuming task. The identification results are often limited by challenges such as the development of separation methods and the availability of known reference standards. A novel structure elucidation system, NP-StructurePredictor, is presented and used to accelerate the process of identifying chemical structures in a mixture based on a branch and bound algorithm combined with a large collection of natural product databases. NP-StructurePredictor requires only targeted molecular weights calculated from a list of m/z values from liquid chromatography-mass spectrometry (LC-MS) experiments as input information to predict the chemical structures of individual components matching the weights in a mixture. NP-StructurePredictor also provides the predicted structures with statistically calculated probabilities so that the most likely chemical structures of the natural products and their analogs can be proposed accordingly. Four data sets consisting of different Chinese herbs with mixtures containing known compounds were selected for validation studies, and all their components were correctly identified and highly predicted using NP-StructurePredictor. NP-StructurePredictor demonstrated its applicability for predicting the chemical structures of novel compounds by returning highly accurate results from four different validation case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ajing完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
2秒前
共享精神应助求学采纳,获得10
3秒前
3秒前
4秒前
hkahai发布了新的文献求助10
4秒前
4秒前
认真一斩完成签到,获得积分20
4秒前
6秒前
6秒前
6秒前
李海妍发布了新的文献求助10
6秒前
大智若榆完成签到,获得积分10
7秒前
wanci应助单纯的手机采纳,获得10
7秒前
8秒前
认真一斩发布了新的文献求助10
8秒前
9秒前
kuku发布了新的文献求助10
9秒前
9秒前
大智若榆发布了新的文献求助10
10秒前
11秒前
hkahai完成签到,获得积分10
11秒前
12秒前
落后芹菜完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
14秒前
15秒前
16秒前
16秒前
maomaoqiu完成签到,获得积分20
16秒前
鳗鱼凡波发布了新的文献求助10
16秒前
求学发布了新的文献求助10
17秒前
阳光海云完成签到,获得积分10
18秒前
Seeking发布了新的文献求助10
18秒前
今后应助maomaoqiu采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310257
求助须知:如何正确求助?哪些是违规求助? 2943243
关于积分的说明 8513288
捐赠科研通 2618458
什么是DOI,文献DOI怎么找? 1431082
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649542