亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3D CNN

分割 冠状动脉 人工智能 体素 冠状动脉疾病 管腔(解剖学) 计算机断层血管造影 卷积神经网络 计算机科学 动脉 右冠状动脉 模式识别(心理学) 医学 放射科 血管造影 内科学 心肌梗塞 冠状动脉造影
作者
Fei Chen,Yu Li,Tian Tian,Feng Cao,Jimin Liang
标识
DOI:10.1117/12.2293289
摘要

Coronary artery disease (CAD) is one of the leading causes of death worldwide. The computed tomography angiography (CTA) is increasingly used to diagnose CAD due to its non-invasive nature and high-resolution three-dimensional (3D) imaging capability of the coronary artery anatomy. CTA allows for identification and grading of stenosis by evaluating the degree of narrowing of the blood-filled coronary artery lumen. Both identification and grading rely on the precise segmentation of the coronary arteries on CTA images. In this paper, a fully automatic segmentation framework is proposed to extract the coronary arteries from the whole cardiac CTA images. The framework adopts a paired multi-scale 3D deep convolutional neural networks (CNNs) to identify which voxels belong to the vessel lumen. Voxels that may belong to coronary artery lumen are recognized by the first CNN in the pair and both artery positives and artery-like negatives are distinguished by the second one. Each CNN is assigned to a different task. They share the same architecture in common but with different weights. In order to combine local and larger contextual information, we adopt a dual pathway architecture that can process the input image simultaneously on multiple scales. The experiments were performed on a CTA dataset from 44 patients. 35 CTA scans are used for training and the rests for testing. The proposed segmentation framework achieved a mean Dice similarity coefficient (DSC) of 0.8649 and mean surface distance (MSD) of 0.5571 with reference to manual annotations. Experimental results show that the proposed framework is capable of performing complete, accurate and robust segmentation of the coronary arteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助huhu采纳,获得10
2秒前
041976发布了新的文献求助10
5秒前
5秒前
6秒前
楚楚发布了新的文献求助10
7秒前
12秒前
一丁雨完成签到,获得积分10
13秒前
13秒前
13秒前
小飞发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
激昂的小凡完成签到,获得积分20
19秒前
小飞发布了新的文献求助10
19秒前
小飞发布了新的文献求助10
19秒前
小飞发布了新的文献求助10
19秒前
小飞发布了新的文献求助10
19秒前
小飞发布了新的文献求助10
19秒前
小飞发布了新的文献求助10
19秒前
小飞发布了新的文献求助10
19秒前
一丁雨发布了新的文献求助10
20秒前
思源应助科研通管家采纳,获得30
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
20秒前
852应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
20秒前
Aswl完成签到 ,获得积分10
28秒前
FashionBoy应助迷人寒梦采纳,获得10
35秒前
39秒前
42秒前
虚幻雁荷完成签到 ,获得积分10
44秒前
上官若男应助Betty采纳,获得10
45秒前
迷人寒梦发布了新的文献求助10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332