Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3D CNN

分割 冠状动脉 人工智能 体素 冠状动脉疾病 管腔(解剖学) 计算机断层血管造影 卷积神经网络 计算机科学 动脉 右冠状动脉 模式识别(心理学) 医学 放射科 血管造影 内科学 心肌梗塞 冠状动脉造影
作者
Fei Chen,Yu Li,Tian Tian,Feng Cao,Jimin Liang
标识
DOI:10.1117/12.2293289
摘要

Coronary artery disease (CAD) is one of the leading causes of death worldwide. The computed tomography angiography (CTA) is increasingly used to diagnose CAD due to its non-invasive nature and high-resolution three-dimensional (3D) imaging capability of the coronary artery anatomy. CTA allows for identification and grading of stenosis by evaluating the degree of narrowing of the blood-filled coronary artery lumen. Both identification and grading rely on the precise segmentation of the coronary arteries on CTA images. In this paper, a fully automatic segmentation framework is proposed to extract the coronary arteries from the whole cardiac CTA images. The framework adopts a paired multi-scale 3D deep convolutional neural networks (CNNs) to identify which voxels belong to the vessel lumen. Voxels that may belong to coronary artery lumen are recognized by the first CNN in the pair and both artery positives and artery-like negatives are distinguished by the second one. Each CNN is assigned to a different task. They share the same architecture in common but with different weights. In order to combine local and larger contextual information, we adopt a dual pathway architecture that can process the input image simultaneously on multiple scales. The experiments were performed on a CTA dataset from 44 patients. 35 CTA scans are used for training and the rests for testing. The proposed segmentation framework achieved a mean Dice similarity coefficient (DSC) of 0.8649 and mean surface distance (MSD) of 0.5571 with reference to manual annotations. Experimental results show that the proposed framework is capable of performing complete, accurate and robust segmentation of the coronary arteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
举个栗子完成签到,获得积分20
1秒前
念心发布了新的文献求助10
1秒前
2秒前
这杯酒名忘情完成签到,获得积分10
2秒前
从容芸发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
雪白巨人发布了新的文献求助50
3秒前
kk发布了新的文献求助10
3秒前
荒年发布了新的文献求助10
3秒前
4秒前
华仔应助舒适从菡采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
研友_VZG7GZ应助合适的落落采纳,获得10
4秒前
桃子应助安详的觅风采纳,获得10
4秒前
哇哈哈哈发布了新的文献求助10
5秒前
6秒前
慕青应助芒果布丁采纳,获得150
6秒前
6秒前
7秒前
万能图书馆应助张铭哲采纳,获得10
7秒前
柚柚完成签到,获得积分10
7秒前
顾矜应助天气晴朗采纳,获得10
7秒前
24完成签到,获得积分10
7秒前
7秒前
liu完成签到 ,获得积分10
8秒前
思川发布了新的文献求助30
8秒前
英俊的铭应助Chivalry0219采纳,获得10
8秒前
starcold发布了新的文献求助10
8秒前
彭洪凯完成签到,获得积分10
8秒前
8秒前
晓彤发布了新的文献求助10
8秒前
9秒前
ccc完成签到,获得积分10
9秒前
TvTiing完成签到,获得积分20
9秒前
Su_Zehe发布了新的文献求助10
9秒前
QWER关注了科研通微信公众号
9秒前
科研通AI6应助意未清采纳,获得10
10秒前
DANK1NG发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590