Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3D CNN

分割 冠状动脉 人工智能 体素 冠状动脉疾病 管腔(解剖学) 计算机断层血管造影 卷积神经网络 计算机科学 动脉 右冠状动脉 模式识别(心理学) 医学 放射科 血管造影 内科学 心肌梗塞 冠状动脉造影
作者
Fei Chen,Yu Li,Tian Tian,Feng Cao,Jimin Liang
标识
DOI:10.1117/12.2293289
摘要

Coronary artery disease (CAD) is one of the leading causes of death worldwide. The computed tomography angiography (CTA) is increasingly used to diagnose CAD due to its non-invasive nature and high-resolution three-dimensional (3D) imaging capability of the coronary artery anatomy. CTA allows for identification and grading of stenosis by evaluating the degree of narrowing of the blood-filled coronary artery lumen. Both identification and grading rely on the precise segmentation of the coronary arteries on CTA images. In this paper, a fully automatic segmentation framework is proposed to extract the coronary arteries from the whole cardiac CTA images. The framework adopts a paired multi-scale 3D deep convolutional neural networks (CNNs) to identify which voxels belong to the vessel lumen. Voxels that may belong to coronary artery lumen are recognized by the first CNN in the pair and both artery positives and artery-like negatives are distinguished by the second one. Each CNN is assigned to a different task. They share the same architecture in common but with different weights. In order to combine local and larger contextual information, we adopt a dual pathway architecture that can process the input image simultaneously on multiple scales. The experiments were performed on a CTA dataset from 44 patients. 35 CTA scans are used for training and the rests for testing. The proposed segmentation framework achieved a mean Dice similarity coefficient (DSC) of 0.8649 and mean surface distance (MSD) of 0.5571 with reference to manual annotations. Experimental results show that the proposed framework is capable of performing complete, accurate and robust segmentation of the coronary arteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿强完成签到,获得积分10
刚刚
衡珩蘅发布了新的文献求助30
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
嘞是举仔应助hanyuchao采纳,获得50
2秒前
up关闭了up文献求助
2秒前
结实黑猫发布了新的文献求助10
2秒前
cmu1h完成签到,获得积分10
2秒前
李凯发布了新的文献求助10
2秒前
2秒前
3秒前
a.........发布了新的文献求助10
4秒前
美味又健康完成签到 ,获得积分10
4秒前
她说肚子是吃大的i完成签到,获得积分10
4秒前
5秒前
wan发布了新的文献求助10
5秒前
阿士大夫完成签到,获得积分10
6秒前
Mt发布了新的文献求助10
6秒前
6秒前
7秒前
麦冬粑粑完成签到,获得积分10
7秒前
卓卓卓卓发布了新的文献求助40
7秒前
SciGPT应助hml采纳,获得10
7秒前
8秒前
9秒前
9秒前
小二郎应助煎饼狗子采纳,获得10
9秒前
金克斯完成签到,获得积分10
9秒前
小卡拉米发布了新的文献求助10
9秒前
9秒前
melone完成签到,获得积分10
9秒前
跳跃元正发布了新的文献求助10
9秒前
HJJHJH发布了新的文献求助10
10秒前
阿士大夫发布了新的文献求助10
10秒前
sciiii发布了新的文献求助30
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
少年应助金克斯采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233