Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3D CNN

分割 冠状动脉 人工智能 体素 冠状动脉疾病 管腔(解剖学) 计算机断层血管造影 卷积神经网络 计算机科学 动脉 右冠状动脉 模式识别(心理学) 医学 放射科 血管造影 内科学 心肌梗塞 冠状动脉造影
作者
Fei Chen,Yu Li,Tian Tian,Feng Cao,Jimin Liang
标识
DOI:10.1117/12.2293289
摘要

Coronary artery disease (CAD) is one of the leading causes of death worldwide. The computed tomography angiography (CTA) is increasingly used to diagnose CAD due to its non-invasive nature and high-resolution three-dimensional (3D) imaging capability of the coronary artery anatomy. CTA allows for identification and grading of stenosis by evaluating the degree of narrowing of the blood-filled coronary artery lumen. Both identification and grading rely on the precise segmentation of the coronary arteries on CTA images. In this paper, a fully automatic segmentation framework is proposed to extract the coronary arteries from the whole cardiac CTA images. The framework adopts a paired multi-scale 3D deep convolutional neural networks (CNNs) to identify which voxels belong to the vessel lumen. Voxels that may belong to coronary artery lumen are recognized by the first CNN in the pair and both artery positives and artery-like negatives are distinguished by the second one. Each CNN is assigned to a different task. They share the same architecture in common but with different weights. In order to combine local and larger contextual information, we adopt a dual pathway architecture that can process the input image simultaneously on multiple scales. The experiments were performed on a CTA dataset from 44 patients. 35 CTA scans are used for training and the rests for testing. The proposed segmentation framework achieved a mean Dice similarity coefficient (DSC) of 0.8649 and mean surface distance (MSD) of 0.5571 with reference to manual annotations. Experimental results show that the proposed framework is capable of performing complete, accurate and robust segmentation of the coronary arteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助小高采纳,获得10
1秒前
cc完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
Zoe完成签到,获得积分10
4秒前
舒苏应助ABCDE采纳,获得30
6秒前
7秒前
慧子完成签到,获得积分10
7秒前
小二郎应助家夜雪采纳,获得10
7秒前
shiiiny发布了新的文献求助10
7秒前
合适白猫完成签到,获得积分10
8秒前
BowieHuang应助元谷雪采纳,获得10
8秒前
薄荷完成签到,获得积分10
8秒前
9秒前
害怕的帽子完成签到 ,获得积分10
9秒前
10秒前
11秒前
寇博翔发布了新的文献求助10
12秒前
烂漫的飞松完成签到,获得积分10
12秒前
苹果冬莲完成签到,获得积分10
12秒前
去心邻域完成签到,获得积分10
13秒前
天地一体完成签到,获得积分10
16秒前
18秒前
梦玲完成签到 ,获得积分10
18秒前
小二郎应助可可奇采纳,获得10
21秒前
22秒前
慕青应助tguczf采纳,获得10
22秒前
23秒前
23秒前
NexusExplorer应助小高采纳,获得10
23秒前
张贵虎完成签到 ,获得积分10
24秒前
李兴完成签到 ,获得积分10
24秒前
25秒前
华仔应助11采纳,获得10
25秒前
研友_VZG7GZ应助竹寺采纳,获得10
25秒前
脑洞疼应助jetwang采纳,获得200
26秒前
27秒前
28秒前
28秒前
清脆的台灯完成签到,获得积分10
28秒前
挽风发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867