Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3D CNN

分割 冠状动脉 人工智能 体素 冠状动脉疾病 管腔(解剖学) 计算机断层血管造影 卷积神经网络 计算机科学 动脉 右冠状动脉 模式识别(心理学) 医学 放射科 血管造影 内科学 心肌梗塞 冠状动脉造影
作者
Fei Chen,Yu Li,Tian Tian,Feng Cao,Jimin Liang
标识
DOI:10.1117/12.2293289
摘要

Coronary artery disease (CAD) is one of the leading causes of death worldwide. The computed tomography angiography (CTA) is increasingly used to diagnose CAD due to its non-invasive nature and high-resolution three-dimensional (3D) imaging capability of the coronary artery anatomy. CTA allows for identification and grading of stenosis by evaluating the degree of narrowing of the blood-filled coronary artery lumen. Both identification and grading rely on the precise segmentation of the coronary arteries on CTA images. In this paper, a fully automatic segmentation framework is proposed to extract the coronary arteries from the whole cardiac CTA images. The framework adopts a paired multi-scale 3D deep convolutional neural networks (CNNs) to identify which voxels belong to the vessel lumen. Voxels that may belong to coronary artery lumen are recognized by the first CNN in the pair and both artery positives and artery-like negatives are distinguished by the second one. Each CNN is assigned to a different task. They share the same architecture in common but with different weights. In order to combine local and larger contextual information, we adopt a dual pathway architecture that can process the input image simultaneously on multiple scales. The experiments were performed on a CTA dataset from 44 patients. 35 CTA scans are used for training and the rests for testing. The proposed segmentation framework achieved a mean Dice similarity coefficient (DSC) of 0.8649 and mean surface distance (MSD) of 0.5571 with reference to manual annotations. Experimental results show that the proposed framework is capable of performing complete, accurate and robust segmentation of the coronary arteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YisShy完成签到,获得积分10
2秒前
cui完成签到,获得积分10
2秒前
Stellarshi517发布了新的文献求助10
3秒前
粽子发布了新的文献求助10
6秒前
6秒前
Mark发布了新的文献求助30
9秒前
不配.应助大气馒头哈采纳,获得10
9秒前
10秒前
12秒前
科研通AI2S应助mmyhn采纳,获得10
12秒前
什么我才是大萌萌应助YHK采纳,获得10
12秒前
13秒前
敏感妙竹发布了新的文献求助10
13秒前
13秒前
asuka完成签到,获得积分20
14秒前
14秒前
14秒前
脑洞疼应助Stellarshi517采纳,获得10
15秒前
苞谷完成签到,获得积分10
15秒前
16秒前
爱学习的小霸完成签到,获得积分10
16秒前
喜悦盼海发布了新的文献求助10
16秒前
欢喜的之瑶完成签到,获得积分10
18秒前
18秒前
田様应助粽子采纳,获得10
18秒前
Jeffery发布了新的文献求助10
19秒前
19秒前
粗暴的达发布了新的文献求助10
19秒前
19秒前
梦派比士发布了新的文献求助10
21秒前
21秒前
吴妙竹hh完成签到 ,获得积分10
21秒前
领导范儿应助浮熙采纳,获得10
22秒前
可塔朵完成签到,获得积分10
22秒前
超帅飞松发布了新的文献求助10
23秒前
薄荷蓝完成签到,获得积分10
23秒前
aaa完成签到,获得积分10
23秒前
zain发布了新的文献求助10
25秒前
一个薯片完成签到,获得积分10
25秒前
Ava应助夕夕口口采纳,获得10
26秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270868
求助须知:如何正确求助?哪些是违规求助? 2910250
关于积分的说明 8353025
捐赠科研通 2580746
什么是DOI,文献DOI怎么找? 1403686
科研通“疑难数据库(出版商)”最低求助积分说明 655910
邀请新用户注册赠送积分活动 635279