材料科学
钙钛矿(结构)
佩多:嘘
薄膜
旋涂
氧化铟锡
能量转换效率
光电子学
纳米技术
化学工程
工程类
图层(电子)
作者
Xinqian Zhang,Gang Wu,Weifei Fu,Minchao Qin,Weitao Yang,Jielin Yan,Zhongqiang Zhang,Xinhui Lu,Hongzheng Chen
标识
DOI:10.1002/aenm.201702498
摘要
Abstract Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA) 2 (MA) n–1 Pb n I 3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH 4 SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA) 2 (MA) n–1 Pb n I 3n+1 /[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH 4 SCN) to 11.01% with the optimized NH 4 SCN addition at n = 5, which is among the highest PCE values for the low‐ n ( n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet ( H r = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization.
科研通智能强力驱动
Strongly Powered by AbleSci AI