A novel energy consumption model for milling process considering tool wear progression

能源消耗 刀具磨损 机床 过程(计算) 机械加工 能量(信号处理) 功率(物理) 高效能源利用 消费(社会学) 功率消耗 机械工程 工艺工程 工程类 计算机科学 汽车工程 可靠性工程 数学 统计 操作系统 电气工程 物理 社会学 量子力学 社会科学
作者
Kan Shi,Dian Zhang,Ning Liu,Sibao Wang,Junxue Ren,Shuo Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:184: 152-159 被引量:55
标识
DOI:10.1016/j.jclepro.2018.02.239
摘要

Energy crisis, climate change, and stringent legislations are imposing great pressure on enterprises, especially manufacturing sectors, to improve their energy efficiency. To achieve higher energy efficiency in manufacturing, reliable energy consumption modelling is the prerequisite since it offers fundamental basis for any energy efficiency-related optimization. Although tool wear is inevitable, traditional energy consumption models fail to take tool wear effects into consideration. To address this issue, this study proposes an energy consumption model with tool wear progression for 3-axis milling process. Based on modern machining theory and recent achievements in energy consumption modelling, the proposed model is firstly derived as an expression with unknown coefficients. Subsequently, the involved coefficients are calibrated based on cutting experiments. With the explicit energy consumption model, power consumption with a given tool wear under new cutting conditions can be predicted with a high accuracy. In addition, as the model reveals a one-to-one correspondence between the power consumption and tool wear, the tool wear can also be effectively estimated from the measured power consumption. Compared with other tool wear monitoring methods such as acoustic emission and vibration, this power consumption-based tool wear estimation method is not only straightforward but also cost-effective. To the best of the authors' knowledge, the proposed energy consumption model with tool wear progression is the first model that was experimentally validated in terms of total power prediction and tool wear prediction, respectively. As such, the proposed model can be a significant supplement to existing energy consumption modelling in machining process, and may provide a more accurate and comprehensive platform for energy efficiency optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zrq完成签到,获得积分20
1秒前
神奇的种子完成签到,获得积分10
1秒前
Tianling完成签到,获得积分10
3秒前
3秒前
发型犀利啊应助zrq采纳,获得10
4秒前
zyx发布了新的文献求助10
6秒前
luoyulin发布了新的文献求助10
7秒前
雨晴轻完成签到,获得积分10
7秒前
orixero应助panjy采纳,获得30
7秒前
巴纳拉完成签到,获得积分10
8秒前
fairy112233完成签到,获得积分20
8秒前
8秒前
zhu完成签到,获得积分10
9秒前
wfs完成签到,获得积分10
9秒前
就是电话发布了新的文献求助30
9秒前
10秒前
10秒前
雨晴轻发布了新的文献求助10
13秒前
安可瓶子发布了新的文献求助10
14秒前
jygjhgy完成签到 ,获得积分10
15秒前
无奈咖啡完成签到,获得积分10
15秒前
16秒前
zyx发布了新的文献求助10
17秒前
145546完成签到 ,获得积分10
18秒前
19秒前
tanny发布了新的文献求助10
22秒前
maodou发布了新的文献求助50
23秒前
23秒前
27秒前
领导范儿应助zyx采纳,获得10
27秒前
大闪电完成签到,获得积分10
30秒前
星辰大海应助打喷嚏的猪采纳,获得10
30秒前
星空完成签到,获得积分20
31秒前
啦啦啦发布了新的文献求助10
32秒前
大艺术家完成签到,获得积分10
37秒前
38秒前
maodou完成签到,获得积分10
38秒前
39秒前
Someone应助自然篮球采纳,获得10
41秒前
summer完成签到,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145247
求助须知:如何正确求助?哪些是违规求助? 2796643
关于积分的说明 7820749
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305322
科研通“疑难数据库(出版商)”最低求助积分说明 627483
版权声明 601464