A novel energy consumption model for milling process considering tool wear progression

能源消耗 刀具磨损 机床 过程(计算) 机械加工 能量(信号处理) 功率(物理) 高效能源利用 消费(社会学) 功率消耗 机械工程 工艺工程 工程类 计算机科学 汽车工程 可靠性工程 工业工程 数学 统计 操作系统 电气工程 物理 社会学 量子力学 社会科学
作者
Kan Shi,Dian Zhang,Ning Liu,Sibao Wang,Junxue Ren,Shuo Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:184: 152-159 被引量:62
标识
DOI:10.1016/j.jclepro.2018.02.239
摘要

Energy crisis, climate change, and stringent legislations are imposing great pressure on enterprises, especially manufacturing sectors, to improve their energy efficiency. To achieve higher energy efficiency in manufacturing, reliable energy consumption modelling is the prerequisite since it offers fundamental basis for any energy efficiency-related optimization. Although tool wear is inevitable, traditional energy consumption models fail to take tool wear effects into consideration. To address this issue, this study proposes an energy consumption model with tool wear progression for 3-axis milling process. Based on modern machining theory and recent achievements in energy consumption modelling, the proposed model is firstly derived as an expression with unknown coefficients. Subsequently, the involved coefficients are calibrated based on cutting experiments. With the explicit energy consumption model, power consumption with a given tool wear under new cutting conditions can be predicted with a high accuracy. In addition, as the model reveals a one-to-one correspondence between the power consumption and tool wear, the tool wear can also be effectively estimated from the measured power consumption. Compared with other tool wear monitoring methods such as acoustic emission and vibration, this power consumption-based tool wear estimation method is not only straightforward but also cost-effective. To the best of the authors' knowledge, the proposed energy consumption model with tool wear progression is the first model that was experimentally validated in terms of total power prediction and tool wear prediction, respectively. As such, the proposed model can be a significant supplement to existing energy consumption modelling in machining process, and may provide a more accurate and comprehensive platform for energy efficiency optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研欢完成签到 ,获得积分10
刚刚
3秒前
helloworld完成签到,获得积分10
3秒前
李新颖完成签到 ,获得积分10
4秒前
郭德久完成签到 ,获得积分0
7秒前
小青椒完成签到,获得积分0
9秒前
踏实的无敌完成签到,获得积分10
14秒前
rgjipeng完成签到,获得积分0
18秒前
zzz完成签到,获得积分10
19秒前
lililiiii完成签到,获得积分10
20秒前
21秒前
害怕的听筠完成签到,获得积分10
33秒前
你好你好完成签到 ,获得积分10
34秒前
失眠的向日葵完成签到 ,获得积分10
36秒前
CadoreK完成签到 ,获得积分10
37秒前
左丘映易完成签到,获得积分10
38秒前
39秒前
余悸完成签到 ,获得积分10
43秒前
lxl完成签到,获得积分10
44秒前
先锋完成签到 ,获得积分10
45秒前
细腻的念真完成签到,获得积分10
45秒前
研友_LpvQlZ完成签到,获得积分10
50秒前
51秒前
大圈圈完成签到,获得积分10
51秒前
54秒前
55秒前
Karvs完成签到,获得积分10
57秒前
Liyy295发布了新的文献求助10
58秒前
喜悦的鬼神完成签到 ,获得积分10
59秒前
小小发布了新的文献求助10
1分钟前
Queen完成签到,获得积分10
1分钟前
橙子应助Angie采纳,获得50
1分钟前
梅子完成签到 ,获得积分10
1分钟前
无花果应助Liyy295采纳,获得10
1分钟前
1分钟前
MHCL完成签到 ,获得积分10
1分钟前
1分钟前
鲁卓林发布了新的文献求助10
1分钟前
wh完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139431
求助须知:如何正确求助?哪些是违规求助? 4338386
关于积分的说明 13512623
捐赠科研通 4177583
什么是DOI,文献DOI怎么找? 2290889
邀请新用户注册赠送积分活动 1291396
关于科研通互助平台的介绍 1233689