A novel energy consumption model for milling process considering tool wear progression

能源消耗 刀具磨损 机床 过程(计算) 机械加工 能量(信号处理) 功率(物理) 高效能源利用 消费(社会学) 功率消耗 机械工程 工艺工程 工程类 计算机科学 汽车工程 可靠性工程 工业工程 数学 统计 操作系统 电气工程 物理 社会学 量子力学 社会科学
作者
Kan Shi,Dian Zhang,Ning Liu,Sibao Wang,Junxue Ren,Shuo Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:184: 152-159 被引量:62
标识
DOI:10.1016/j.jclepro.2018.02.239
摘要

Energy crisis, climate change, and stringent legislations are imposing great pressure on enterprises, especially manufacturing sectors, to improve their energy efficiency. To achieve higher energy efficiency in manufacturing, reliable energy consumption modelling is the prerequisite since it offers fundamental basis for any energy efficiency-related optimization. Although tool wear is inevitable, traditional energy consumption models fail to take tool wear effects into consideration. To address this issue, this study proposes an energy consumption model with tool wear progression for 3-axis milling process. Based on modern machining theory and recent achievements in energy consumption modelling, the proposed model is firstly derived as an expression with unknown coefficients. Subsequently, the involved coefficients are calibrated based on cutting experiments. With the explicit energy consumption model, power consumption with a given tool wear under new cutting conditions can be predicted with a high accuracy. In addition, as the model reveals a one-to-one correspondence between the power consumption and tool wear, the tool wear can also be effectively estimated from the measured power consumption. Compared with other tool wear monitoring methods such as acoustic emission and vibration, this power consumption-based tool wear estimation method is not only straightforward but also cost-effective. To the best of the authors' knowledge, the proposed energy consumption model with tool wear progression is the first model that was experimentally validated in terms of total power prediction and tool wear prediction, respectively. As such, the proposed model can be a significant supplement to existing energy consumption modelling in machining process, and may provide a more accurate and comprehensive platform for energy efficiency optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jellybeans完成签到,获得积分20
1秒前
小马甲应助fkhuny采纳,获得10
2秒前
orixero应助inter采纳,获得10
2秒前
zhou完成签到,获得积分20
2秒前
科研通AI6应助adsf采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
安静的博发布了新的文献求助10
4秒前
4秒前
5秒前
1234完成签到,获得积分20
5秒前
yang1完成签到,获得积分10
6秒前
6秒前
星海发布了新的文献求助10
6秒前
浮游应助yoowt采纳,获得10
6秒前
斯文败类应助坚强的曼雁采纳,获得10
7秒前
11223发布了新的文献求助10
7秒前
无照无招发布了新的文献求助10
7秒前
别摆烂了完成签到,获得积分10
8秒前
yt发布了新的文献求助10
8秒前
桃井尤川发布了新的文献求助10
8秒前
9秒前
the完成签到,获得积分20
9秒前
9秒前
打打应助琪琪快发论文采纳,获得30
9秒前
大个应助小枣采纳,获得10
10秒前
呵呵呵呵发布了新的文献求助10
10秒前
ou完成签到,获得积分10
10秒前
要减肥的铃铛完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
JYQ完成签到,获得积分10
12秒前
完美世界应助过儿采纳,获得10
12秒前
登山人完成签到,获得积分10
12秒前
科研通AI2S应助sunzyu采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435534
求助须知:如何正确求助?哪些是违规求助? 4547530
关于积分的说明 14209113
捐赠科研通 4467757
什么是DOI,文献DOI怎么找? 2448727
邀请新用户注册赠送积分活动 1439617
关于科研通互助平台的介绍 1416244