A novel energy consumption model for milling process considering tool wear progression

能源消耗 刀具磨损 机床 过程(计算) 机械加工 能量(信号处理) 功率(物理) 高效能源利用 消费(社会学) 功率消耗 机械工程 工艺工程 工程类 计算机科学 汽车工程 可靠性工程 工业工程 数学 社会科学 社会学 电气工程 操作系统 统计 物理 量子力学
作者
Kan Shi,Dian Zhang,Ning Liu,Sibao Wang,Junxue Ren,Shuo Wang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:184: 152-159 被引量:62
标识
DOI:10.1016/j.jclepro.2018.02.239
摘要

Energy crisis, climate change, and stringent legislations are imposing great pressure on enterprises, especially manufacturing sectors, to improve their energy efficiency. To achieve higher energy efficiency in manufacturing, reliable energy consumption modelling is the prerequisite since it offers fundamental basis for any energy efficiency-related optimization. Although tool wear is inevitable, traditional energy consumption models fail to take tool wear effects into consideration. To address this issue, this study proposes an energy consumption model with tool wear progression for 3-axis milling process. Based on modern machining theory and recent achievements in energy consumption modelling, the proposed model is firstly derived as an expression with unknown coefficients. Subsequently, the involved coefficients are calibrated based on cutting experiments. With the explicit energy consumption model, power consumption with a given tool wear under new cutting conditions can be predicted with a high accuracy. In addition, as the model reveals a one-to-one correspondence between the power consumption and tool wear, the tool wear can also be effectively estimated from the measured power consumption. Compared with other tool wear monitoring methods such as acoustic emission and vibration, this power consumption-based tool wear estimation method is not only straightforward but also cost-effective. To the best of the authors' knowledge, the proposed energy consumption model with tool wear progression is the first model that was experimentally validated in terms of total power prediction and tool wear prediction, respectively. As such, the proposed model can be a significant supplement to existing energy consumption modelling in machining process, and may provide a more accurate and comprehensive platform for energy efficiency optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王亲近发布了新的文献求助10
2秒前
2秒前
成就的咖啡完成签到 ,获得积分10
2秒前
2秒前
chao完成签到,获得积分10
3秒前
华仔应助王肖宁采纳,获得10
4秒前
浮游应助汕头凯奇采纳,获得10
4秒前
机智的雁荷完成签到 ,获得积分10
4秒前
cooper发布了新的文献求助10
5秒前
John发布了新的文献求助10
5秒前
leiyang49完成签到,获得积分10
8秒前
今后应助Creshiki采纳,获得10
10秒前
叮叮叮发布了新的文献求助10
10秒前
10秒前
ls完成签到,获得积分10
10秒前
13秒前
充电宝应助科研小渣渣采纳,获得10
14秒前
Owen应助婷婷的大宝剑采纳,获得10
18秒前
shhoing应助乆乆乆乆采纳,获得10
18秒前
19秒前
直率的砖头完成签到,获得积分10
19秒前
阳光问安完成签到 ,获得积分10
21秒前
22秒前
22秒前
大模型应助茶米采纳,获得10
23秒前
23秒前
cooper完成签到,获得积分20
24秒前
25秒前
25秒前
27秒前
28秒前
28秒前
29秒前
zhangwj226完成签到,获得积分10
29秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
酷波er应助gzl采纳,获得10
31秒前
32秒前
Ava应助多情的忆之采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003