A novel energy consumption model for milling process considering tool wear progression

能源消耗 刀具磨损 机床 过程(计算) 机械加工 能量(信号处理) 功率(物理) 高效能源利用 消费(社会学) 功率消耗 机械工程 工艺工程 工程类 计算机科学 汽车工程 可靠性工程 数学 社会科学 社会学 电气工程 操作系统 统计 物理 量子力学
作者
Kan Shi,Dian Zhang,Ning Liu,Sibao Wang,Junxue Ren,Shuo Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:184: 152-159 被引量:55
标识
DOI:10.1016/j.jclepro.2018.02.239
摘要

Energy crisis, climate change, and stringent legislations are imposing great pressure on enterprises, especially manufacturing sectors, to improve their energy efficiency. To achieve higher energy efficiency in manufacturing, reliable energy consumption modelling is the prerequisite since it offers fundamental basis for any energy efficiency-related optimization. Although tool wear is inevitable, traditional energy consumption models fail to take tool wear effects into consideration. To address this issue, this study proposes an energy consumption model with tool wear progression for 3-axis milling process. Based on modern machining theory and recent achievements in energy consumption modelling, the proposed model is firstly derived as an expression with unknown coefficients. Subsequently, the involved coefficients are calibrated based on cutting experiments. With the explicit energy consumption model, power consumption with a given tool wear under new cutting conditions can be predicted with a high accuracy. In addition, as the model reveals a one-to-one correspondence between the power consumption and tool wear, the tool wear can also be effectively estimated from the measured power consumption. Compared with other tool wear monitoring methods such as acoustic emission and vibration, this power consumption-based tool wear estimation method is not only straightforward but also cost-effective. To the best of the authors' knowledge, the proposed energy consumption model with tool wear progression is the first model that was experimentally validated in terms of total power prediction and tool wear prediction, respectively. As such, the proposed model can be a significant supplement to existing energy consumption modelling in machining process, and may provide a more accurate and comprehensive platform for energy efficiency optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
satan9完成签到,获得积分10
1秒前
Six_seven完成签到,获得积分10
3秒前
海城好人完成签到,获得积分10
7秒前
7秒前
SciGPT应助赵成龙采纳,获得10
7秒前
11秒前
草莓公主bb完成签到,获得积分10
13秒前
lyn发布了新的文献求助10
13秒前
勋勋xxx发布了新的文献求助10
14秒前
16秒前
dasaber完成签到,获得积分10
16秒前
田様应助逆时针采纳,获得10
17秒前
abb完成签到 ,获得积分10
17秒前
多情的灵安完成签到,获得积分10
19秒前
赵成龙发布了新的文献求助10
20秒前
英姑应助知识探索家采纳,获得10
20秒前
21秒前
23秒前
jackZ完成签到,获得积分10
23秒前
liwenhao123完成签到,获得积分10
24秒前
852应助牛牛眉目采纳,获得10
24秒前
25秒前
小小富应助zhan采纳,获得20
25秒前
洋葱发布了新的文献求助10
25秒前
赵成龙完成签到,获得积分10
26秒前
26秒前
777发布了新的文献求助10
28秒前
28秒前
Akim应助勋勋xxx采纳,获得10
28秒前
sun完成签到,获得积分10
29秒前
wind发布了新的文献求助10
29秒前
红叶发布了新的文献求助20
29秒前
英姑应助HelenZ采纳,获得10
31秒前
喽喽发布了新的文献求助10
31秒前
32秒前
32秒前
33秒前
34秒前
yx_cheng应助xiaolaoshu采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351