Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG

发作性 脑电图 计算机科学 卷积神经网络 二元分类 人工智能 深度学习 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 支持向量机 心理学 神经科学 语言学 哲学
作者
Andreas Antoniades,Loukianos Spyrou,David Martín-López,Antonio Valentı́n,Gonzalo Alarcón,Saeid Sanei,Clive Cheong Took
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 2285-2294 被引量:85
标识
DOI:10.1109/tnsre.2017.2755770
摘要

Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lucky发布了新的文献求助10
刚刚
英俊的铭应助旅行的天空采纳,获得10
刚刚
1秒前
1秒前
小蘑菇应助xy采纳,获得10
1秒前
1秒前
kanoz完成签到,获得积分10
1秒前
herschelwu完成签到,获得积分10
1秒前
huaming发布了新的文献求助10
1秒前
2秒前
2秒前
泼泼完成签到,获得积分10
2秒前
3秒前
3秒前
qqiu发布了新的文献求助10
3秒前
星辰大海应助沟通亿心采纳,获得10
3秒前
李健的小迷弟应助zoma采纳,获得10
4秒前
默11发布了新的文献求助10
4秒前
wxl19完成签到,获得积分20
4秒前
4秒前
mmiww完成签到,获得积分10
4秒前
yize发布了新的文献求助10
4秒前
4秒前
小蘑菇应助宋宋采纳,获得10
4秒前
Jinyang发布了新的文献求助10
5秒前
5秒前
博修完成签到,获得积分10
5秒前
jony发布了新的文献求助10
5秒前
5秒前
cicicixixici发布了新的文献求助10
5秒前
予你完成签到,获得积分10
6秒前
bkagyin应助妩媚的问玉采纳,获得10
6秒前
青山有别完成签到,获得积分10
6秒前
Owen应助33采纳,获得50
6秒前
6秒前
李晨阳发布了新的文献求助20
6秒前
6秒前
xyzdmmm完成签到,获得积分10
6秒前
李白完成签到,获得积分10
6秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450