Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG

发作性 脑电图 计算机科学 卷积神经网络 二元分类 人工智能 深度学习 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 支持向量机 心理学 神经科学 语言学 哲学
作者
Andreas Antoniades,Loukianos Spyrou,David Martín-López,Antonio Valentı́n,Gonzalo Alarcón,Saeid Sanei,Clive Cheong Took
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 2285-2294 被引量:85
标识
DOI:10.1109/tnsre.2017.2755770
摘要

Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tenacity完成签到,获得积分10
刚刚
幽默厉发布了新的文献求助10
刚刚
1秒前
2秒前
东石头发布了新的文献求助10
3秒前
Cindy完成签到,获得积分10
3秒前
小静每天都开心完成签到,获得积分10
3秒前
4秒前
humble完成签到 ,获得积分10
4秒前
5秒前
橙橙橙橙发布了新的文献求助10
5秒前
6秒前
星星完成签到,获得积分10
6秒前
田様应助zxzb采纳,获得10
7秒前
zsy发布了新的文献求助10
7秒前
852应助幽默厉采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
李键刚发布了新的文献求助10
9秒前
yibo完成签到,获得积分10
11秒前
14秒前
14秒前
14秒前
16秒前
搜集达人应助马凤仪采纳,获得10
16秒前
jianwu完成签到,获得积分10
17秒前
17秒前
slby完成签到 ,获得积分10
19秒前
百里烬言发布了新的文献求助20
19秒前
Gong发布了新的文献求助10
19秒前
小郭完成签到,获得积分20
19秒前
xiaoqi发布了新的文献求助10
20秒前
zxzb发布了新的文献求助10
20秒前
烟花应助小呆采纳,获得10
21秒前
wangxy发布了新的文献求助10
21秒前
22秒前
SciGPT应助阿狸贱贱采纳,获得10
22秒前
23秒前
浮游应助阳光易真采纳,获得10
24秒前
半山完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490181
求助须知:如何正确求助?哪些是违规求助? 4588853
关于积分的说明 14421629
捐赠科研通 4520708
什么是DOI,文献DOI怎么找? 2476826
邀请新用户注册赠送积分活动 1462308
关于科研通互助平台的介绍 1435222