Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG

发作性 脑电图 计算机科学 卷积神经网络 二元分类 人工智能 深度学习 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 支持向量机 心理学 神经科学 语言学 哲学
作者
Andreas Antoniades,Loukianos Spyrou,David Martín-López,Antonio Valentı́n,Gonzalo Alarcón,Saeid Sanei,Clive Cheong Took
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 2285-2294 被引量:85
标识
DOI:10.1109/tnsre.2017.2755770
摘要

Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sonia发布了新的文献求助10
刚刚
zzzy发布了新的文献求助20
刚刚
英姑应助yuxuan采纳,获得10
1秒前
1秒前
1秒前
科研狗发布了新的文献求助10
1秒前
古月发布了新的文献求助10
2秒前
爱吃瓜的搬砖猴完成签到,获得积分10
3秒前
阿佑发布了新的文献求助10
3秒前
star应助清和夜廿三采纳,获得20
3秒前
平淡南霜完成签到,获得积分10
4秒前
4秒前
宗门天才少女完成签到,获得积分10
4秒前
聪明雅绿发布了新的文献求助10
4秒前
欢呼的巧蕊完成签到,获得积分10
4秒前
洁净的醉波完成签到,获得积分10
4秒前
hmf410发布了新的文献求助10
4秒前
5秒前
hr发布了新的文献求助10
5秒前
斯文败类应助薄荷采纳,获得10
5秒前
ax驳回了情怀应助
5秒前
邓年念发布了新的文献求助10
5秒前
无为完成签到,获得积分10
6秒前
梦之发布了新的文献求助10
7秒前
安详的小凝完成签到,获得积分10
7秒前
风格和完成签到,获得积分10
8秒前
难过的大白菜完成签到,获得积分10
8秒前
8秒前
8秒前
holting完成签到,获得积分10
9秒前
xmhxpz发布了新的文献求助10
9秒前
9秒前
脑洞疼应助fishuae采纳,获得10
9秒前
10秒前
10秒前
11秒前
李狗蛋发布了新的文献求助10
11秒前
深情安青应助阿佑采纳,获得10
11秒前
jane完成签到,获得积分10
11秒前
秀丽小猫咪给math-naive的求助进行了留言
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594