Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG

发作性 脑电图 计算机科学 卷积神经网络 二元分类 人工智能 深度学习 模式识别(心理学) 特征(语言学) 人工神经网络 机器学习 支持向量机 心理学 神经科学 语言学 哲学
作者
Andreas Antoniades,Loukianos Spyrou,David Martín-López,Antonio Valentı́n,Gonzalo Alarcón,Saeid Sanei,Clive Cheong Took
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 2285-2294 被引量:85
标识
DOI:10.1109/tnsre.2017.2755770
摘要

Detection algorithms for electroencephalography (EEG) data, especially in the field of interictal epileptiform discharge (IED) detection, have traditionally employed handcrafted features, which utilized specific characteristics of neural responses. Although these algorithms achieve high accuracy, mere detection of an IED holds little clinical significance. In this paper, we consider deep learning for epileptic subjects to accommodate automatic feature generation from intracranial EEG data, while also providing clinical insight. Convolutional neural networks are trained in a subject independent fashion to demonstrate how meaningful features are automatically learned in a hierarchical process. We illustrate how the convolved filters in the deepest layers provide insight toward the different types of IEDs within the group, as confirmed by our expert clinicians. The morphology of the IEDs found in filters can help evaluate the treatment of a patient. To improve the learning of the deep model, moderately different score classes are utilized as opposed to binary IED and non-IED labels. The resulting model achieves state-of-the-art classification performance and is also invariant to time differences between the IEDs. This paper suggests that deep learning is suitable for automatic feature generation from intracranial EEG data, while also providing insight into the data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助smin采纳,获得10
1秒前
1秒前
1秒前
木瑾发布了新的文献求助10
1秒前
传奇3应助小梁砖家采纳,获得10
2秒前
LSX发布了新的文献求助10
2秒前
2秒前
韶夜阑完成签到,获得积分20
2秒前
大模型应助刘岩松采纳,获得10
2秒前
崔彤完成签到,获得积分10
3秒前
geold发布了新的文献求助10
3秒前
3秒前
开心完成签到,获得积分10
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
赘婿应助积极慕晴采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
暴龙战士完成签到,获得积分10
5秒前
我是老大应助王珂珂采纳,获得10
6秒前
ryx完成签到,获得积分10
6秒前
小巧的牛排完成签到 ,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803