Fingertip Piezoelectric Tactile Sensor Array for Roughness Encoding Under Varying Scanning Velocity

触觉传感器 表面光洁度 声学 表面粗糙度 标准差 人工智能 纹理(宇宙学) 计算机视觉 材料科学 计算机科学 光学 数学 物理 机器人 统计 图像(数学) 复合材料
作者
Weiting Liu,Ping Yu,Chunxin Gu,Xiaoying Cheng,Xin Fu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:17 (21): 6867-6879 被引量:44
标识
DOI:10.1109/jsen.2017.2721740
摘要

Roughness is a primary perceptual dimension of surface texture and plays an important role in human and robotic tactile object perception. In human, the magnitude estimates of roughness are independent of scanning velocity. On the other hand, artificial roughness encoding had to work under known scanning velocity or carry out stereotyped exploratory movement with almost the same velocity in each step action. We here presented a new fingertip piezoelectric tactile sensor array with a density similar to human Pacinian Corpuscles and capable of roughness eliciting from exploration. A novel characteristic variable Δt f prin. , which is product of response time interval between adjacent sensor units and the principal frequency of vibration, is first time proposed for roughness recognition. And the new characteristic variable is sensitive to surface roughness but independent of the scanning velocity. With the proposed characteristic variable, seven stimuli with a spatial period of 300, 400, 440, 480, 600, 800, and 1000 μm were successfully distinguished under varying scanning velocity exploration, with an identification accuracy of 99.93%. Above used velocity range is from 10 to 150 mm/s, which can fully cover velocities in common application neurophysiologic studies and human natural exploration. Repeatability is comparatively good with average relative standard deviation of only 1.31%. Furthermore, experiments with elliptical grating verified that this roughness encoding method also fits for the texture with two-dimensional pattern. In addition, texture amplitude detection experiments were performed and results show that the vibration amplitude (A prin. ) grows linearly when the texture amplitude (h) changes from 25 to 300 μm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹌鹑131完成签到,获得积分10
1秒前
Owen应助方董采纳,获得10
2秒前
2秒前
3秒前
852应助梁子恒采纳,获得10
3秒前
zj发布了新的文献求助10
4秒前
aminai完成签到,获得积分20
4秒前
5秒前
刘一手完成签到,获得积分10
7秒前
7秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
8秒前
程琛发布了新的文献求助20
9秒前
杳霭流玉发布了新的文献求助10
9秒前
9秒前
刘一手发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助10
11秒前
12秒前
舒心明杰完成签到,获得积分10
12秒前
12秒前
科研通AI6应助阙女士采纳,获得10
14秒前
醉熏的伊完成签到,获得积分10
14秒前
AA18236931952发布了新的文献求助10
15秒前
上官若男应助郑板桥采纳,获得10
15秒前
AJY完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
方董发布了新的文献求助10
19秒前
lengchitu发布了新的文献求助10
21秒前
无花果应助哟嚛采纳,获得10
21秒前
斯沃特应助研友_Zb1rln采纳,获得10
22秒前
22秒前
无情的rr发布了新的文献求助10
23秒前
zgx关注了科研通微信公众号
24秒前
Phoo完成签到 ,获得积分10
24秒前
谢朝邦发布了新的文献求助30
26秒前
伟少发布了新的文献求助100
26秒前
GPTea举报耶咦求助涉嫌违规
26秒前
一只迅猛龙完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123