Blurriness-Guided Unsharp Masking

反锐化掩蔽 像素 遮罩(插图) 计算机科学 人工智能 滤波器(信号处理) 计算机视觉 噪音(视频) 图像(数学) 降噪 非本地手段 图像复原 GSM演进的增强数据速率 模式识别(心理学) 图像增强 图像处理 视觉艺术 艺术
作者
Wei Ye,Kai‐Kuang Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4465-4477 被引量:33
标识
DOI:10.1109/tip.2018.2838660
摘要

In this paper, a highly-adaptive unsharp masking (UM) method is proposed and called the blurriness-guided UM, or BUM, in short. The proposed BUM exploits the estimated local blurriness as the guidance information to perform pixel-wise enhancement. The consideration of local blurriness is motivated by the fact that enhancing a highly-sharp or a highly-blurred image region is undesirable, since this could easily yield unpleasant image artifacts due to over-enhancement or noise enhancement, respectively. Our proposed BUM algorithm has two powerful adaptations as follows. First, the enhancement strength is adjusted for each pixel on the input image according to the degree of local blurriness measured at the local region of this pixel's location. All such measurements collectively form the blurriness map, from which the scaling matrix can be obtained using our proposed mapping process. Second, we also consider the type of layer-decomposition filter exploited for generating the base layer and the detail layer, since this consideration would effectively help to prevent over-enhancement artifacts. In this paper, the layer-decomposition filter is considered from the viewpoint of edge-preserving type versus non-edge-preserving type. Extensive simulations experimented on various test images have clearly demonstrated that our proposed BUM is able to consistently yield superior enhanced images with better perceptual quality to that of using a fixed enhancement strength or other state-of-the-art adaptive UM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rfgfg应助老大车采纳,获得20
刚刚
刚刚
与非发布了新的文献求助10
刚刚
刚刚
充电宝应助shinn采纳,获得10
1秒前
just do it发布了新的文献求助200
1秒前
1秒前
大力的含卉完成签到,获得积分10
1秒前
justin发布了新的文献求助10
2秒前
Dxxxt发布了新的文献求助10
2秒前
无花果应助wangdafa采纳,获得10
2秒前
硅负极发布了新的文献求助10
3秒前
3秒前
优秀的嚓茶完成签到,获得积分10
3秒前
3秒前
乐乐应助付宇飞采纳,获得10
3秒前
英俊的铭应助神勇代荷采纳,获得30
3秒前
郭子仪发布了新的文献求助10
4秒前
xianyaoz完成签到 ,获得积分0
4秒前
shirelylee完成签到,获得积分10
5秒前
无花果应助念安采纳,获得10
5秒前
6秒前
6秒前
Ava应助沉静的钢笔采纳,获得10
7秒前
充电宝应助停停走走采纳,获得10
7秒前
7秒前
学术蝗虫发布了新的文献求助10
7秒前
xywong发布了新的文献求助30
9秒前
Leonard发布了新的文献求助10
9秒前
娜美发布了新的文献求助10
10秒前
10秒前
赖道之发布了新的文献求助10
10秒前
11秒前
11秒前
完美世界应助fjmuxsy采纳,获得10
11秒前
小蘑菇应助zzer采纳,获得10
12秒前
科研小白完成签到,获得积分10
13秒前
13秒前
顾翩翩完成签到,获得积分10
13秒前
tang12发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207