Blurriness-Guided Unsharp Masking

反锐化掩蔽 像素 遮罩(插图) 计算机科学 人工智能 滤波器(信号处理) 计算机视觉 噪音(视频) 图像(数学) 降噪 非本地手段 图像复原 GSM演进的增强数据速率 模式识别(心理学) 图像增强 图像处理 艺术 视觉艺术
作者
Wei Ye,Kai‐Kuang Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4465-4477 被引量:33
标识
DOI:10.1109/tip.2018.2838660
摘要

In this paper, a highly-adaptive unsharp masking (UM) method is proposed and called the blurriness-guided UM, or BUM, in short. The proposed BUM exploits the estimated local blurriness as the guidance information to perform pixel-wise enhancement. The consideration of local blurriness is motivated by the fact that enhancing a highly-sharp or a highly-blurred image region is undesirable, since this could easily yield unpleasant image artifacts due to over-enhancement or noise enhancement, respectively. Our proposed BUM algorithm has two powerful adaptations as follows. First, the enhancement strength is adjusted for each pixel on the input image according to the degree of local blurriness measured at the local region of this pixel's location. All such measurements collectively form the blurriness map, from which the scaling matrix can be obtained using our proposed mapping process. Second, we also consider the type of layer-decomposition filter exploited for generating the base layer and the detail layer, since this consideration would effectively help to prevent over-enhancement artifacts. In this paper, the layer-decomposition filter is considered from the viewpoint of edge-preserving type versus non-edge-preserving type. Extensive simulations experimented on various test images have clearly demonstrated that our proposed BUM is able to consistently yield superior enhanced images with better perceptual quality to that of using a fixed enhancement strength or other state-of-the-art adaptive UM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Song0558完成签到,获得积分10
1秒前
2秒前
烟花应助小L采纳,获得10
3秒前
xx发布了新的文献求助10
3秒前
打打应助外向樱采纳,获得10
4秒前
我要发Nature完成签到,获得积分10
4秒前
6秒前
7秒前
8秒前
9秒前
Doris发布了新的文献求助10
10秒前
11秒前
11秒前
冷傲源智完成签到,获得积分10
12秒前
12秒前
FlyingAxe完成签到,获得积分10
12秒前
13秒前
pxwhhh完成签到,获得积分10
13秒前
14秒前
JH.Zhao完成签到,获得积分10
14秒前
15秒前
小L发布了新的文献求助10
17秒前
小滨发布了新的文献求助10
17秒前
17秒前
传奇3应助wang采纳,获得10
20秒前
20秒前
hahahahaaaa发布了新的文献求助50
21秒前
Yang发布了新的文献求助10
22秒前
JamesPei应助搞怪的甜瓜采纳,获得10
24秒前
西方印迹大王完成签到 ,获得积分10
24秒前
suki完成签到,获得积分10
25秒前
26秒前
ll发布了新的文献求助10
28秒前
Akim应助joe采纳,获得10
30秒前
Z在完成签到 ,获得积分10
30秒前
31秒前
科研通AI6应助哈哈哈采纳,获得10
31秒前
顾矜应助oVUVo采纳,获得10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343