Blurriness-Guided Unsharp Masking

反锐化掩蔽 像素 遮罩(插图) 计算机科学 人工智能 滤波器(信号处理) 计算机视觉 噪音(视频) 图像(数学) 降噪 非本地手段 图像复原 GSM演进的增强数据速率 模式识别(心理学) 图像增强 图像处理 视觉艺术 艺术
作者
Wei Ye,Kai‐Kuang Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4465-4477 被引量:34
标识
DOI:10.1109/tip.2018.2838660
摘要

In this paper, a highly-adaptive unsharp masking (UM) method is proposed and called the blurriness-guided UM, or BUM, in short. The proposed BUM exploits the estimated local blurriness as the guidance information to perform pixel-wise enhancement. The consideration of local blurriness is motivated by the fact that enhancing a highly-sharp or a highly-blurred image region is undesirable, since this could easily yield unpleasant image artifacts due to over-enhancement or noise enhancement, respectively. Our proposed BUM algorithm has two powerful adaptations as follows. First, the enhancement strength is adjusted for each pixel on the input image according to the degree of local blurriness measured at the local region of this pixel's location. All such measurements collectively form the blurriness map, from which the scaling matrix can be obtained using our proposed mapping process. Second, we also consider the type of layer-decomposition filter exploited for generating the base layer and the detail layer, since this consideration would effectively help to prevent over-enhancement artifacts. In this paper, the layer-decomposition filter is considered from the viewpoint of edge-preserving type versus non-edge-preserving type. Extensive simulations experimented on various test images have clearly demonstrated that our proposed BUM is able to consistently yield superior enhanced images with better perceptual quality to that of using a fixed enhancement strength or other state-of-the-art adaptive UM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
听风暖完成签到 ,获得积分10
3秒前
暴躁的咖啡完成签到,获得积分10
4秒前
5秒前
1874发布了新的文献求助10
6秒前
阿花阿花发布了新的文献求助10
7秒前
li完成签到,获得积分10
7秒前
看星星完成签到 ,获得积分10
7秒前
酷酷的乐菱完成签到,获得积分10
8秒前
1874完成签到,获得积分10
10秒前
啤酒白菜发布了新的文献求助30
11秒前
Ava应助忧郁的依珊采纳,获得10
11秒前
华仔应助阿花阿花采纳,获得10
14秒前
超帅蛋挞完成签到,获得积分10
15秒前
15秒前
温暖小猫咪完成签到,获得积分10
16秒前
16秒前
16秒前
19秒前
19秒前
20秒前
20秒前
21秒前
azure发布了新的文献求助30
21秒前
22秒前
23秒前
24秒前
24秒前
syt完成签到 ,获得积分10
25秒前
长情凌翠发布了新的文献求助10
25秒前
29秒前
情怀应助逃亡的小狗采纳,获得10
30秒前
山月完成签到 ,获得积分10
30秒前
努力发布了新的文献求助10
34秒前
34秒前
LLL发布了新的文献求助10
38秒前
666完成签到 ,获得积分10
40秒前
Umwandlung完成签到,获得积分10
41秒前
hhhhh完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760