Blurriness-Guided Unsharp Masking

反锐化掩蔽 像素 遮罩(插图) 计算机科学 人工智能 滤波器(信号处理) 计算机视觉 噪音(视频) 图像(数学) 降噪 非本地手段 图像复原 GSM演进的增强数据速率 模式识别(心理学) 图像增强 图像处理 视觉艺术 艺术
作者
Wei Ye,Kai‐Kuang Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4465-4477 被引量:33
标识
DOI:10.1109/tip.2018.2838660
摘要

In this paper, a highly-adaptive unsharp masking (UM) method is proposed and called the blurriness-guided UM, or BUM, in short. The proposed BUM exploits the estimated local blurriness as the guidance information to perform pixel-wise enhancement. The consideration of local blurriness is motivated by the fact that enhancing a highly-sharp or a highly-blurred image region is undesirable, since this could easily yield unpleasant image artifacts due to over-enhancement or noise enhancement, respectively. Our proposed BUM algorithm has two powerful adaptations as follows. First, the enhancement strength is adjusted for each pixel on the input image according to the degree of local blurriness measured at the local region of this pixel's location. All such measurements collectively form the blurriness map, from which the scaling matrix can be obtained using our proposed mapping process. Second, we also consider the type of layer-decomposition filter exploited for generating the base layer and the detail layer, since this consideration would effectively help to prevent over-enhancement artifacts. In this paper, the layer-decomposition filter is considered from the viewpoint of edge-preserving type versus non-edge-preserving type. Extensive simulations experimented on various test images have clearly demonstrated that our proposed BUM is able to consistently yield superior enhanced images with better perceptual quality to that of using a fixed enhancement strength or other state-of-the-art adaptive UM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一应助稳重的蛟凤采纳,获得20
刚刚
xiaole完成签到,获得积分10
1秒前
6666666666发布了新的文献求助20
1秒前
1秒前
DWDD发布了新的文献求助10
1秒前
成龙王发布了新的文献求助10
2秒前
BowieHuang应助颖颖采纳,获得10
2秒前
科研通AI6.1应助jingle采纳,获得10
2秒前
2秒前
3秒前
sswbzh给好运偏爱的那个男的的求助进行了留言
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
坚定的雁完成签到 ,获得积分10
5秒前
5秒前
Sun1c7发布了新的文献求助10
5秒前
6秒前
6秒前
邢丹丹发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
勤恳的鹰发布了新的文献求助10
9秒前
小丸子发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
不安乐曲发布了新的文献求助10
10秒前
BowieHuang应助啵啵采纳,获得10
10秒前
11秒前
CodeCraft应助千里采纳,获得10
11秒前
11秒前
wangxuejiao发布了新的文献求助10
11秒前
孔雀东南风完成签到,获得积分10
12秒前
Intro发布了新的文献求助10
12秒前
无极微光应助清脆的夜白采纳,获得20
12秒前
13秒前
李爱国应助代沁采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933