A Smart Robotic System for Non-Contact Condition Monitoring and Fault Detection in Buried Pipelines

管道运输 无损检测 工程类 漏磁 法律工程学 机械工程 磁铁 医学 放射科
作者
Xiaoxiong Zhang,Amit Shukla,Abdulla Al‐Ali,Hamad Karki
标识
DOI:10.2118/192773-ms
摘要

Abstract Condition monitoring and defect inspection in the buried oil and gas pipelines, made of ferrous material, has always been a challenge for all organizations operating in the Oil & Gas sector. Pipelines can be inspected in two ways, internally and externally. Internal inspection by ILI tools require special infrastructures like pig launchers and receivers along with pre-preparation before inspection like internal cleaning there is the data collecting and analysis process which is time-consuming. Whereas in communally used external inspection a group of workers drive a vehicle along the pipelines to perform visual inspection of the pipelines for detection of leakage or any other kind of visible damages. Such manual external inspection is highly inefficient, expensive and hazardous. In such a way it is difficult to obtain any important information for the anomalies brewing in the buried pipes or cathodic protection layer. A lot of work has been done towards developing NDT technologies to inspect pipelines. However, most of the NDT sensors work only in close vicinity of the pipeline surface which requires an excavation of the pipelines and exposing the structure. This shortcoming of NDT techniques has attracted researchers towards other NDT techniques such as non-invasive magnetomatric diagnosis (NIMD) which allows non-contact detection of anomalies from distance in the core metal of the pipelines deeply buried underground. NIMD sensors work on principle of measuring distortions of residual magnetic fields conditions by the variation of the pipeline’s metal magnetic permeability in stress concentration zone due to combined influence of various factors such as residual stress, vibration, bending and loading of pipelines, installation stress and temperature fluctuations etc. These handheld magnetic sensors are used manually by field operators therefore inspection of long pipelines in extreme environmental conditions is not feasible. A non-contact external robotic inspection system, Autonomous Ground Vehicle (AGV), carrying such non-contact magnetic and visual sensors is designed and tested in this work. AGV is equipped with two kinds of sensors, the first navigation sensors and the second inspection sensors. Accurate autonomous tracking of the pipelines by the AGV is achieved by fusion of three navigation mechanisms based on visual data, GPS and pipe locator. The pipe locator in combination of CP post is one of the most extensively used sensors in the oil and gas industry for tracking the buried pipelines. In this work manually used pipe locator is now fully automatized for autonomous tracking of the buried pipelines by the AGV. For this purpose, a hybrid automata trajectory controller is developed for a non-holonomic AGV where a PID controller is combined with non-linear forward velocity of the AGV depending on the lateral distance error and angular alignment error. Field experiments are conducted successfully to demonstrate accuracy of the newly designed controller. Successful development of such complex mechanism requires solution of many critical challenges like teleoperation, system and supervisory controls, trajectory tracking, image processing and sensor data fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助ZHY采纳,获得10
刚刚
3秒前
Nick完成签到 ,获得积分0
4秒前
6秒前
传统的语柳完成签到,获得积分10
6秒前
善良的焦完成签到,获得积分10
7秒前
霸气秀发布了新的文献求助10
8秒前
11秒前
科研通AI6.1应助韩梅采纳,获得10
11秒前
11秒前
小星星668完成签到,获得积分10
13秒前
Ann完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助30
15秒前
15秒前
专一的水之完成签到,获得积分20
15秒前
学术喳喳完成签到,获得积分10
15秒前
16秒前
16秒前
haha完成签到,获得积分10
17秒前
科研通AI6.1应助儒雅绿草采纳,获得10
19秒前
pzhxsy发布了新的文献求助10
20秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
光明左使发布了新的文献求助10
25秒前
pzhxsy完成签到,获得积分20
27秒前
27秒前
wx完成签到 ,获得积分10
28秒前
邓布利多博完成签到,获得积分10
28秒前
bkagyin应助专一的水之采纳,获得10
29秒前
在水一方应助莫妮卡.宾采纳,获得10
30秒前
30秒前
Vincent发布了新的文献求助10
31秒前
yangy801017完成签到 ,获得积分10
31秒前
单薄的涫发布了新的文献求助10
32秒前
科研通AI6.1应助ZJHYNL采纳,获得10
32秒前
唐亿倩完成签到,获得积分10
33秒前
憨憨兔子完成签到,获得积分10
35秒前
Vincent完成签到,获得积分10
36秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896