清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning

强化学习 计算机科学 人工智能 稳健性(进化) 适应度函数 隐马尔可夫模型 人工神经网络 机器学习 算法 遗传算法 生物化学 基因 化学
作者
Kun Wang,WaiChing Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:346: 216-241 被引量:108
标识
DOI:10.1016/j.cma.2018.11.026
摘要

This paper presents a new meta-modeling framework that employs deep reinforcement learning (DRL) to generate mechanical constitutive models for interfaces. The constitutive models are conceptualized as information flow in directed graphs. The process of writing constitutive models is simplified as a sequence of forming graph edges with the goal of maximizing the model score (a function of accuracy, robustness and forward prediction quality). Thus meta-modeling can be formulated as a Markov decision process with well-defined states, actions, rules, objective functions and rewards. By using neural networks to estimate policies and state values, the computer agent is able to efficiently self-improve the constitutive model it generated through self-playing, in the same way AlphaGo Zero (the algorithm that outplayed the world champion in the game of Go) improves its gameplay. Our numerical examples show that this automated meta-modeling framework does not only produces models which outperform existing cohesive models on benchmark traction–separation data, but is also capable of detecting hidden mechanisms among micro-structural features and incorporating them in constitutive models to improve the forward prediction accuracy, both of which are difficult tasks to do manually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noah完成签到 ,获得积分10
刚刚
斯文败类应助Sophie采纳,获得10
5秒前
14秒前
Sophie发布了新的文献求助10
19秒前
ee_Liu完成签到,获得积分10
29秒前
Owen应助fff采纳,获得10
31秒前
32秒前
37秒前
如意的馒头完成签到 ,获得积分10
37秒前
39秒前
46秒前
知性的灵波完成签到,获得积分10
47秒前
eden发布了新的文献求助20
52秒前
eden完成签到,获得积分10
1分钟前
小奋青完成签到 ,获得积分10
1分钟前
tjfwg完成签到,获得积分10
1分钟前
1分钟前
燕山堂完成签到 ,获得积分10
1分钟前
Frank发布了新的文献求助10
1分钟前
wayne完成签到 ,获得积分10
1分钟前
1分钟前
djf点儿完成签到 ,获得积分10
2分钟前
顾矜应助朴实的耳机采纳,获得10
2分钟前
扬帆起航完成签到 ,获得积分10
2分钟前
tmrrrrrr完成签到 ,获得积分10
2分钟前
会扎针的小张完成签到,获得积分10
2分钟前
3分钟前
Sunny完成签到 ,获得积分10
3分钟前
虚幻的尔竹完成签到 ,获得积分10
3分钟前
3分钟前
背书强完成签到 ,获得积分10
3分钟前
火花完成签到 ,获得积分10
3分钟前
小西完成签到 ,获得积分10
3分钟前
3分钟前
zz完成签到 ,获得积分10
3分钟前
wefor完成签到 ,获得积分10
3分钟前
迷人的沛山完成签到 ,获得积分10
3分钟前
申木完成签到 ,获得积分10
4分钟前
段采萱完成签到 ,获得积分10
4分钟前
黄花菜完成签到 ,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068236
求助须知:如何正确求助?哪些是违规求助? 2722176
关于积分的说明 7476072
捐赠科研通 2369138
什么是DOI,文献DOI怎么找? 1256228
科研通“疑难数据库(出版商)”最低求助积分说明 609518
版权声明 596835