Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning

强化学习 计算机科学 人工智能 稳健性(进化) 适应度函数 隐马尔可夫模型 人工神经网络 机器学习 算法 遗传算法 生物化学 基因 化学
作者
Kun Wang,WaiChing Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:346: 216-241 被引量:108
标识
DOI:10.1016/j.cma.2018.11.026
摘要

This paper presents a new meta-modeling framework that employs deep reinforcement learning (DRL) to generate mechanical constitutive models for interfaces. The constitutive models are conceptualized as information flow in directed graphs. The process of writing constitutive models is simplified as a sequence of forming graph edges with the goal of maximizing the model score (a function of accuracy, robustness and forward prediction quality). Thus meta-modeling can be formulated as a Markov decision process with well-defined states, actions, rules, objective functions and rewards. By using neural networks to estimate policies and state values, the computer agent is able to efficiently self-improve the constitutive model it generated through self-playing, in the same way AlphaGo Zero (the algorithm that outplayed the world champion in the game of Go) improves its gameplay. Our numerical examples show that this automated meta-modeling framework does not only produces models which outperform existing cohesive models on benchmark traction–separation data, but is also capable of detecting hidden mechanisms among micro-structural features and incorporating them in constitutive models to improve the forward prediction accuracy, both of which are difficult tasks to do manually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yangaaa完成签到 ,获得积分10
1秒前
yufengyan发布了新的文献求助10
1秒前
YY完成签到,获得积分10
1秒前
1秒前
Ava应助古德方采纳,获得10
2秒前
许志强发布了新的文献求助10
2秒前
善学以致用应助dou采纳,获得10
2秒前
cdercder完成签到,获得积分0
3秒前
馆长应助kitra采纳,获得50
3秒前
完美世界应助sll采纳,获得10
4秒前
空城完成签到,获得积分10
4秒前
Ride完成签到,获得积分10
4秒前
乾雨发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
GOUGOU2022发布了新的文献求助10
6秒前
yang发布了新的文献求助10
6秒前
6秒前
冷傲忆彤完成签到 ,获得积分10
6秒前
唐磊完成签到,获得积分10
6秒前
背后的雪巧完成签到,获得积分10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
brick2024完成签到,获得积分10
8秒前
斯文败类应助111采纳,获得10
9秒前
壹贰完成签到,获得积分10
9秒前
wansida完成签到,获得积分10
9秒前
engel58完成签到,获得积分10
10秒前
kaoyikaoli完成签到,获得积分10
10秒前
人生苦短完成签到,获得积分10
10秒前
11秒前
尉迟希望完成签到,获得积分10
12秒前
12秒前
乐乐应助wxq采纳,获得10
12秒前
AHR完成签到,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763