Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning

强化学习 计算机科学 人工智能 稳健性(进化) 适应度函数 隐马尔可夫模型 人工神经网络 机器学习 算法 遗传算法 生物化学 化学 基因
作者
Kun Wang,WaiChing Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:346: 216-241 被引量:108
标识
DOI:10.1016/j.cma.2018.11.026
摘要

This paper presents a new meta-modeling framework that employs deep reinforcement learning (DRL) to generate mechanical constitutive models for interfaces. The constitutive models are conceptualized as information flow in directed graphs. The process of writing constitutive models is simplified as a sequence of forming graph edges with the goal of maximizing the model score (a function of accuracy, robustness and forward prediction quality). Thus meta-modeling can be formulated as a Markov decision process with well-defined states, actions, rules, objective functions and rewards. By using neural networks to estimate policies and state values, the computer agent is able to efficiently self-improve the constitutive model it generated through self-playing, in the same way AlphaGo Zero (the algorithm that outplayed the world champion in the game of Go) improves its gameplay. Our numerical examples show that this automated meta-modeling framework does not only produces models which outperform existing cohesive models on benchmark traction–separation data, but is also capable of detecting hidden mechanisms among micro-structural features and incorporating them in constitutive models to improve the forward prediction accuracy, both of which are difficult tasks to do manually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助zxy采纳,获得10
刚刚
内向问寒完成签到,获得积分10
1秒前
1秒前
1秒前
笔墨留香完成签到,获得积分10
2秒前
2秒前
禾风完成签到,获得积分10
2秒前
shmily完成签到,获得积分10
3秒前
liaomr发布了新的文献求助10
3秒前
3秒前
内向问寒发布了新的文献求助10
4秒前
5秒前
DijiaXu应助Muhammad采纳,获得10
5秒前
5秒前
DijiaXu应助Muhammad采纳,获得10
6秒前
6秒前
斯文败类应助Muhammad采纳,获得10
6秒前
十四应助Muhammad采纳,获得10
6秒前
Akim应助Muhammad采纳,获得50
6秒前
JamesPei应助Muhammad采纳,获得10
6秒前
十四应助Muhammad采纳,获得10
6秒前
彭于晏应助Muhammad采纳,获得10
6秒前
星星完成签到,获得积分20
6秒前
CodeCraft应助Muhammad采纳,获得10
6秒前
小蘑菇应助欣慰的乌冬面采纳,获得10
6秒前
独特冰安发布了新的文献求助10
6秒前
乐乐应助一介书生采纳,获得10
8秒前
unicho完成签到,获得积分10
8秒前
joe55667788发布了新的文献求助10
8秒前
zhuxl完成签到,获得积分10
8秒前
vv发布了新的文献求助10
9秒前
9秒前
9秒前
李冬卿发布了新的文献求助10
9秒前
10秒前
阿翼发布了新的文献求助10
10秒前
11秒前
momo完成签到,获得积分10
11秒前
rh1006完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975250
求助须知:如何正确求助?哪些是违规求助? 3519625
关于积分的说明 11199055
捐赠科研通 3255962
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877358
科研通“疑难数据库(出版商)”最低求助积分说明 806298