Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning

强化学习 计算机科学 人工智能 稳健性(进化) 适应度函数 隐马尔可夫模型 人工神经网络 机器学习 算法 遗传算法 生物化学 化学 基因
作者
Kun Wang,WaiChing Sun
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:346: 216-241 被引量:108
标识
DOI:10.1016/j.cma.2018.11.026
摘要

This paper presents a new meta-modeling framework that employs deep reinforcement learning (DRL) to generate mechanical constitutive models for interfaces. The constitutive models are conceptualized as information flow in directed graphs. The process of writing constitutive models is simplified as a sequence of forming graph edges with the goal of maximizing the model score (a function of accuracy, robustness and forward prediction quality). Thus meta-modeling can be formulated as a Markov decision process with well-defined states, actions, rules, objective functions and rewards. By using neural networks to estimate policies and state values, the computer agent is able to efficiently self-improve the constitutive model it generated through self-playing, in the same way AlphaGo Zero (the algorithm that outplayed the world champion in the game of Go) improves its gameplay. Our numerical examples show that this automated meta-modeling framework does not only produces models which outperform existing cohesive models on benchmark traction–separation data, but is also capable of detecting hidden mechanisms among micro-structural features and incorporating them in constitutive models to improve the forward prediction accuracy, both of which are difficult tasks to do manually.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的水云完成签到,获得积分20
1秒前
1秒前
1秒前
松饼发布了新的文献求助10
2秒前
秦时明月199588完成签到,获得积分10
2秒前
香蕉觅云应助风中的致远采纳,获得10
2秒前
2秒前
今后应助oywt采纳,获得10
3秒前
3秒前
莫若舞完成签到,获得积分10
3秒前
龙金兴完成签到 ,获得积分20
3秒前
zzx发布了新的文献求助10
3秒前
4秒前
奥一奥发布了新的文献求助30
4秒前
ssynkl发布了新的文献求助50
4秒前
6秒前
6秒前
垃圾智造者完成签到,获得积分10
6秒前
樱桃小贩完成签到,获得积分10
7秒前
共享精神应助言言采纳,获得10
7秒前
8秒前
8秒前
zzx完成签到,获得积分10
8秒前
柒八染发布了新的文献求助10
8秒前
斯文明杰发布了新的文献求助10
9秒前
华仔应助zhanks采纳,获得10
9秒前
9秒前
星辰大海应助skskysky采纳,获得10
10秒前
10秒前
哈哈哈发布了新的文献求助10
11秒前
pluto应助淡淡书白采纳,获得10
11秒前
呆桃苏打完成签到,获得积分10
11秒前
桐桐应助金鑫水淼采纳,获得10
12秒前
zwj发布了新的文献求助10
12秒前
745789发布了新的文献求助10
12秒前
freebra发布了新的文献求助10
13秒前
程雯慧发布了新的文献求助10
14秒前
沉默成沨发布了新的文献求助30
14秒前
14秒前
Ava应助TXNM采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207