已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Band clustering using expectation-maximization algorithm and weighted average fusion-based feature extraction for hyperspectral image classification

模式识别(心理学) 计算机科学 算法 特征(语言学) 降维 特征选择 k均值聚类
作者
Manoharan Prabukumar,Sawant Shrutika
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:12 (04): 046015- 被引量:17
标识
DOI:10.1117/1.jrs.12.046015
摘要

The presence of a significant amount of information in the hyperspectral image makes it suitable for numerous applications. However, extraction of the suitable and informative features from the high-dimensional data is a tedious task. A feature extraction technique using expectation–maximization (EM) clustering and weighted average fusion technique is proposed. Bhattacharya distance measure is used for computing the distance among all the spectral bands. With this distance information, the spectral bands are grouped into the clusters by employing the EM clustering method. The EM algorithm automatically converges to an optimum number of clusters, thereby specifying the absence of need for the required number of clusters. The bands in each cluster are fused together applying the weighted average fusion method. The weight of each band is calculated on the basis of the criteria of minimizing the distance inside the cluster and maximizing the distance among the different clusters. The fused bands from each cluster are then considered as the extracted features. These features are used to train the support vector machine for classification of the hyperspectral image. The performance of the proposed technique has been validated against three small-size standard bench-mark datasets, Indian Pines, Pavia University, Salinas, and one large-size dataset, Botswana. The proposed method achieves an overall accuracy (OA) of 92.19%, 94.10%, 93.96%, and 84.92% for Indian Pines, Pavia University, Salinas, and Botswana datasets, respectively. The experimental results prove that the proposed technique attains significant classification performance in terms of the OA, average accuracy, and Cohen’s kappa coefficient (k) when compared to the other competing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Layman应助yar采纳,获得60
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得30
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得50
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
朴实子骞完成签到 ,获得积分10
2秒前
噜噜完成签到,获得积分10
3秒前
性静H情逸完成签到,获得积分10
4秒前
s_chui发布了新的文献求助10
5秒前
灯飞发布了新的文献求助10
5秒前
小彭完成签到,获得积分10
5秒前
5秒前
yudandan@CJLU发布了新的文献求助10
7秒前
11秒前
11秒前
英俊的铭应助s_chui采纳,获得10
14秒前
淡定蓝发布了新的文献求助10
14秒前
HC完成签到,获得积分10
15秒前
黑米粥发布了新的文献求助10
15秒前
大力蚂蚁发布了新的文献求助10
16秒前
wzh完成签到 ,获得积分10
16秒前
吴彦祖完成签到,获得积分10
16秒前
CHEE完成签到 ,获得积分10
18秒前
slx发布了新的文献求助10
18秒前
yudandan@CJLU完成签到,获得积分10
18秒前
快乐的废物完成签到,获得积分10
20秒前
21秒前
舒克6666完成签到,获得积分20
21秒前
飞天817完成签到,获得积分10
21秒前
yar应助xxttt采纳,获得10
21秒前
24秒前
25秒前
alan完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994300
求助须知:如何正确求助?哪些是违规求助? 3534729
关于积分的说明 11266406
捐赠科研通 3274658
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883283
科研通“疑难数据库(出版商)”最低求助积分说明 809731