已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of sepsis patients using machine learning approach: A meta-analysis

机器学习 败血症 人工智能 荟萃分析 计算机科学 医学 内科学
作者
Md. Mohaimenul Islam,Tahmina Nasrin,Bruno Walther,Chieh-Chen Wu,Hsuan‐Chia Yang,Yu‐Chuan Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:170: 1-9 被引量:200
标识
DOI:10.1016/j.cmpb.2018.12.027
摘要

Sepsis is a common and major health crisis in hospitals globally. An innovative and feasible tool for predicting sepsis remains elusive. However, early and accurate prediction of sepsis could help physicians with proper treatments and minimize the diagnostic uncertainty. Machine learning models could help to identify potential clinical variables and provide higher performance than existing traditional low-performance models. We therefore performed a meta-analysis of observational studies to quantify the performance of a machine learning model to predict sepsis. A comprehensive literature search was conducted through the electronic database (e.g. PubMed, Scopus, Google Scholar, EMBASE, etc.) between January 1, 2000, and March 1, 2018. All the studies published in English and reporting the sepsis prediction using machine learning algorithms were considered in this study. Two authors independently extracted valuable information from the included studies. Inclusion and exclusion of studies were based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A total of 7 out of 135 studies met all of our inclusion criteria. For machine learning models, the pooled area under receiving operating curve (SAUROC) for predicting sepsis onset 3 to 4 h before, was 0.89 (95%CI: 0.86–0.92); sensitivity 0.81 (95%CI:0.80–0.81), and specificity 0.72 (95%CI:0.72–0.72) whereas the pooled SAUROC for SIRS, MEWS, and SOFA was 0.70, 0.50, and 0.78. Additionally, diagnostic odd ratio for machine learning, SIRS, MEWS, and SOFA was 15.17 (95%CI: 9.51–24.20), 3.23 (95%CI: 1.52–6.87), 31.99 (95% CI: 1.54–666.74), and 3.75(95%CI: 2.06–6.83). Our study findings suggest that the machine learning approach had a better performance than the existing sepsis scoring systems in predicting sepsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名之辈完成签到,获得积分10
2秒前
3秒前
___淡完成签到 ,获得积分10
4秒前
saberLee完成签到,获得积分10
6秒前
HeP发布了新的文献求助10
8秒前
14秒前
15秒前
情怀应助苹果果汁采纳,获得10
15秒前
YZ完成签到,获得积分10
17秒前
18秒前
DayFu完成签到 ,获得积分10
19秒前
068发布了新的文献求助10
19秒前
书生完成签到,获得积分10
20秒前
tejing1158完成签到 ,获得积分10
20秒前
21秒前
edsenone发布了新的文献求助10
21秒前
25秒前
26秒前
葫芦壳完成签到 ,获得积分10
27秒前
27秒前
funny发布了新的文献求助10
30秒前
奋斗的萝发布了新的文献求助10
31秒前
苹果果汁发布了新的文献求助10
33秒前
南昌黑人完成签到,获得积分10
36秒前
白瓜完成签到 ,获得积分10
36秒前
李爱国应助关关采纳,获得10
36秒前
婷123完成签到 ,获得积分10
39秒前
39秒前
稳重完成签到 ,获得积分10
42秒前
懒羊羊大王完成签到 ,获得积分10
43秒前
Maggie完成签到 ,获得积分10
47秒前
068完成签到,获得积分10
47秒前
ranj完成签到,获得积分10
49秒前
天天天才完成签到,获得积分10
49秒前
zy完成签到,获得积分10
51秒前
蓝胖子完成签到 ,获得积分10
51秒前
嗯哼完成签到,获得积分0
52秒前
丸子完成签到,获得积分20
57秒前
57秒前
犹豫笑容完成签到,获得积分10
58秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241689
求助须知:如何正确求助?哪些是违规求助? 2886177
关于积分的说明 8242211
捐赠科研通 2554730
什么是DOI,文献DOI怎么找? 1382807
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625303