Detection of Cavities and Tunnels from Gravity Data using a Neural Network

地质学 人工神经网络 地球物理学 大地测量学 计算机科学 地震学 人工智能
作者
V. J. S. Grauch
出处
期刊:Exploration Geophysics [Taylor & Francis]
卷期号:32 (3-4): 204-208 被引量:45
标识
DOI:10.1071/eg01204
摘要

AbstractHigh-resolution aeromagnetic surveys were acquired for the Albuquerque basin in the central Rio Grande rift, a basin filled with poorly consolidated sediments. The surveys proved successful in efficiently and economically mapping previously unknown hydrogeologic features of the shallow subsurface. This success suggests that aeromagnetic methods may be useful in hydrogeologic studies of other sediment-filled basins.The aeromagnetic surveys were used primarily to delineate buried igneous rocks and to locate faults within the basin fill, both important for understanding the subsurface hydrogeology. Buried igneous rocks were recognized from their high-frequency, high-amplitude magnetic responses and characteristic map patterns. The horizontal-gradient and local wavenumber methods were used to obtain estimates of their source depths.The aeromagnetic surveys were also successfully used to locate faults within the basin fill. Magnetic signatures associated with faults are produced by the juxtaposition of sediments having differing magnetic properties rather than the products of secondary processes. Expression of faults is abundant throughout the basin, revealing patterns that cannot be mapped at the surface due to widespread cover.A fault signature recognized in the high-resolution data that has multiple inflection points is best explained by a fault with a thin magnetic layer on the upthrown block and thick magnetic layer on the downthrown block, called the thin-thick layers model. Geologically, this signature indicates erosion of the upthrown block or a growth-faulting scenario: fault-controlled sedimentation for faults that offset sediments, and successive accumulation of basalt on the downthrown block for faults that offset volcanic rocks.Keywordsaeromagnetic surveyhydrogeologysedimentary basinfaultsigneous rocks

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王哈哈完成签到,获得积分10
2秒前
Kkk完成签到 ,获得积分10
3秒前
赛猪完成签到,获得积分10
3秒前
彭于晏应助1vvvv采纳,获得10
5秒前
6秒前
科研通AI5应助优势构象采纳,获得10
8秒前
9秒前
9秒前
小李老博关注了科研通微信公众号
10秒前
MING_Q发布了新的文献求助10
11秒前
hqh发布了新的文献求助10
14秒前
领导范儿应助William采纳,获得10
14秒前
shawna关注了科研通微信公众号
14秒前
学有所成关注了科研通微信公众号
19秒前
MING_Q完成签到,获得积分10
21秒前
一方完成签到 ,获得积分10
22秒前
华仔应助hqh采纳,获得10
24秒前
世界第一初恋完成签到,获得积分10
26秒前
文献完成签到,获得积分20
27秒前
可爱的函函应助背书强采纳,获得10
28秒前
遇上就这样吧应助wdb采纳,获得10
32秒前
dandna完成签到 ,获得积分10
34秒前
李爱国应助背书强采纳,获得10
38秒前
FashionBoy应助文献采纳,获得10
40秒前
43秒前
李健的小迷弟应助背书强采纳,获得10
47秒前
优势构象发布了新的文献求助10
49秒前
50秒前
汉堡包应助旺仔同学采纳,获得10
51秒前
大模型应助吱吱采纳,获得10
56秒前
王军鹏发布了新的文献求助10
56秒前
777发布了新的文献求助10
56秒前
azure完成签到,获得积分10
57秒前
zqf发布了新的文献求助10
57秒前
白许四十完成签到,获得积分10
58秒前
nino应助Alimeteors采纳,获得10
59秒前
优势构象完成签到,获得积分10
1分钟前
1分钟前
zhzhzh完成签到,获得积分10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967