优秀运动员
计算生物学
运动员
新陈代谢
精英
生物
化学
生物化学
医学
生物信息学
物理疗法
政治学
政治
法学
作者
Jonathan Scheiman,Jacob M. Luber,Theodore A. Chavkin,Tara L. MacDonald,Angela Tung,Loc‐Duyen D. Pham,Marsha C. Wibowo,Renee Wurth,Sukanya Punthambaker,Braden Tierney,Zhen Yang,Mohammad W. Hattab,Julián Ávila-Pacheco,Clary B. Clish,Sarah J. Lessard,George M. Church,Aleksandar D. Kostic
出处
期刊:Nature Medicine
[Springer Nature]
日期:2019-06-24
卷期号:25 (7): 1104-1109
被引量:576
标识
DOI:10.1038/s41591-019-0485-4
摘要
The human gut microbiome is linked to many states of human health and disease1. The metabolic repertoire of the gut microbiome is vast, but the health implications of these bacterial pathways are poorly understood. In this study, we identify a link between members of the genus Veillonella and exercise performance. We observed an increase in Veillonella relative abundance in marathon runners postmarathon and isolated a strain of Veillonella atypica from stool samples. Inoculation of this strain into mice significantly increased exhaustive treadmill run time. Veillonella utilize lactate as their sole carbon source, which prompted us to perform a shotgun metagenomic analysis in a cohort of elite athletes, finding that every gene in a major pathway metabolizing lactate to propionate is at higher relative abundance postexercise. Using 13C3-labeled lactate in mice, we demonstrate that serum lactate crosses the epithelial barrier into the lumen of the gut. We also show that intrarectal instillation of propionate is sufficient to reproduce the increased treadmill run time performance observed with V. atypica gavage. Taken together, these studies reveal that V. atypica improves run time via its metabolic conversion of exercise-induced lactate into propionate, thereby identifying a natural, microbiome-encoded enzymatic process that enhances athletic performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI