Understanding the Giant Gap between Single‐Pore‐ and Membrane‐Based Nanofluidic Osmotic Power Generators

纳米孔 功率密度 材料科学 多孔性 渗透力 桥接(联网) 纳米技术 纳米流体学 工作(物理) 功率(物理) 化学物理 复合材料 机械工程 化学 热力学 计算机科学 工程类 物理 反渗透 正渗透 生物化学 计算机网络
作者
Jun Gao,Xueli Liu,Yanan Jiang,Liping Ding,Lei Jiang,Wei Guo
出处
期刊:Small [Wiley]
卷期号:15 (11) 被引量:138
标识
DOI:10.1002/smll.201804279
摘要

Nanofluidic blue energy harvesting attracts great interest due to its high power density and easy-to-implement nature. Proof-of-concept studies on single-pore platforms show that the power density approaches up to 103 to 106 W m-2 . However, to translate the estimated high power density into real high power becomes a challenge in membrane-scale applications. The actual power density from existing membrane materials is merely several watts per square meter. Understanding the origin and thereby bridging the giant gap between the single-pore demonstration and the membrane-scale application is therefore highly demanded. In this work, an intuitive resistance paradigm is adopted to show that this giant gap originates from the different ion transport property in porous membrane, which is dominated by both the constant reservoir resistance and the reservoir/nanopore interfacial resistance. In this case, the generated electric power becomes saturated despite the increasing pore number. The theoretical predictions are further compared with existing experimental results in literature. For both single nanopore and multipore membrane, the simulation results excellently cover the range of the experimental results. Importantly, by suppressing the reservoir and interfacial resistances, kW m-2 to MW m-2 power density can be achieved with multipore membranes, approaching the level of a single-pore system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Lucas应助梦灵采纳,获得10
3秒前
lwsxv发布了新的文献求助30
4秒前
无花果应助T田采纳,获得10
4秒前
5秒前
6秒前
6秒前
rqy发布了新的文献求助10
7秒前
7秒前
10秒前
无花果应助小赵同学采纳,获得10
11秒前
zhian发布了新的文献求助10
12秒前
李朋完成签到,获得积分10
12秒前
rqy完成签到,获得积分10
12秒前
ahhhhhhh关注了科研通微信公众号
14秒前
搜集达人应助mo72090采纳,获得10
15秒前
19秒前
栾小鱼完成签到,获得积分10
21秒前
22秒前
www完成签到,获得积分10
22秒前
高高雪瑶完成签到,获得积分10
23秒前
qin完成签到,获得积分10
23秒前
帅气的科研男孩完成签到,获得积分10
23秒前
23秒前
lwsxv完成签到,获得积分20
24秒前
25秒前
hcw发布了新的文献求助30
25秒前
26秒前
寒舟饮完成签到,获得积分10
27秒前
shirley完成签到,获得积分10
27秒前
完美世界应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
28秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
28秒前
兴奋涵雁完成签到,获得积分10
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309