亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Active-Passive Dynamic Consensus Filters With Reduced Information Exchange and Time-Varying Agent Roles

计算机科学 控制理论(社会学) 多智能体系统 共识
作者
J. Daniel Peterson,Tansel Yucelen,Jagannathan Sarangapani,Eduardo L. Pasiliao
出处
期刊:IEEE Transactions on Control Systems and Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 844-856
标识
DOI:10.1109/tcst.2019.2896534
摘要

Active-passive dynamic consensus filters consist of agents subject to local observations of a process (i.e., active agents) and agents without any observations (i.e., passive agents). The key feature of these filters is that they enable the states of all agents to converge to the average of the observations only sensed by the active agents. Two sweeping generalizations can be made about existing active-passive dynamic consensus filters: 1) they utilize integral action-based distributed control algorithms such that each agent is required to continuously exchange both its current state and integral state information with its neighbors; and 2) they assume that the roles of active and passive agents are fixed ; hence, these roles do not change with respect to time. The contribution of this paper is to introduce and analyze a new class of active-passive dynamic consensus filters using results from graph theory and systems science. Specifically, the proposed filters only require agents to exchange their current state information with neighbors in a simple and isotropic manner to reduce the overall information exchange cost of the network. In addition, we allow the roles of active and passive agents to be time-varying for making these filters suitable for a wide range of multiagent systems applications. We show that the proposed active-passive dynamic consensus filters enable the states of all agents to converge to an user-adjustable neighborhood of the average of the observations sensed by a time-varying set of active agents. We also generalize our results using event-triggered control theory such that agents schedule information exchange dependent on errors exceeding user-defined thresholds ( not continuously). This generalization allows agents to further reduce the overall cost of interagent information exchange and to determine when to broadcast their information to their neighbors thus eliminating the need to synchronize their states. Four illustrative numerical examples and one experimental study are also presented to demonstrate our theoretical findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
共享精神应助材料生采纳,获得10
4秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
寻道图强应助科研通管家采纳,获得30
5秒前
Lucas应助石榴汁的书采纳,获得10
11秒前
12秒前
NiLou发布了新的文献求助30
15秒前
香蕉觅云应助默默采纳,获得10
17秒前
材料生发布了新的文献求助10
17秒前
wen完成签到,获得积分10
17秒前
18秒前
传奇3应助个性凝天采纳,获得10
24秒前
25秒前
wen发布了新的文献求助10
25秒前
默默发布了新的文献求助10
29秒前
斯文败类应助OnlyHarbour采纳,获得10
33秒前
39秒前
sky11完成签到,获得积分10
43秒前
46秒前
47秒前
李澳完成签到,获得积分10
50秒前
李澳发布了新的文献求助10
52秒前
qty完成签到 ,获得积分10
55秒前
Orange应助超级野狼采纳,获得10
57秒前
顺利寻冬完成签到,获得积分10
57秒前
1分钟前
1分钟前
温暖发布了新的文献求助10
1分钟前
领导范儿应助lllll采纳,获得10
1分钟前
1分钟前
1分钟前
李子彤发布了新的文献求助10
1分钟前
超级野狼发布了新的文献求助10
1分钟前
keyanbaicai发布了新的文献求助10
1分钟前
西吴完成签到 ,获得积分10
1分钟前
小南极完成签到,获得积分10
1分钟前
9℃完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754731
求助须知:如何正确求助?哪些是违规求助? 5489024
关于积分的说明 15380533
捐赠科研通 4893223
什么是DOI,文献DOI怎么找? 2631816
邀请新用户注册赠送积分活动 1579732
关于科研通互助平台的介绍 1535521