Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2

催化作用 化学 电化学 Atom(片上系统) 法拉第效率 分子 吸附 密度泛函理论 选择性 氧化还原 化学物理 纳米技术 无机化学 化学工程 材料科学 电极 计算化学 物理化学 有机化学 工程类 嵌入式系统 计算机科学
作者
Jiqing Jiao,Rui Lin,Shoujie Liu,Weng‐Chon Cheong,Chao Zhang,Zheng Chen,Yuan Pan,Jianguo Tang,Konglin Wu,Sung‐Fu Hung,Hao Ming Chen,Lirong Zheng,Qi Lu,Xuan Yang,Bingjun Xu,Hai Xiao,Jun Li,Dingsheng Wang,Qing Peng,Chen Chen
出处
期刊:Nature Chemistry [Nature Portfolio]
卷期号:11 (3): 222-228 被引量:712
标识
DOI:10.1038/s41557-018-0201-x
摘要

The electrochemical reduction of CO2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an ‘atom-pair catalyst’, that work together to carry out the critical bimolecular step in CO2 reduction. The atom-pair catalyst features stable Cu10–Cu1x+ pair structures, with Cu1x+ adsorbing H2O and the neighbouring Cu10 adsorbing CO2, which thereby promotes CO2 activation. This results in a Faradaic efficiency for CO generation above 92%, with the competing hydrogen evolution reaction almost completely suppressed. Experimental characterization and density functional theory revealed that the adsorption configuration reduces the activation energy, which generates high selectivity, activity and stability under relatively low potentials. Anchored single-atom catalysts have recently been shown to be very active for various processes, however, a catalyst that features two adjacent copper atoms—which we call an atom-pair catalyst—is now reported. The Cu10–Cu1x+ pair structures work together to carry out the critical bimolecular step in CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
超级芷云发布了新的文献求助10
3秒前
乔婉婷发布了新的文献求助10
5秒前
雪山飞龙发布了新的文献求助10
7秒前
情怀应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
在水一方应助超级芷云采纳,获得10
9秒前
Akim应助酒酿是也采纳,获得10
10秒前
阿聪发布了新的文献求助100
13秒前
笨笨念文完成签到 ,获得积分10
13秒前
舒心莫言完成签到,获得积分10
13秒前
汉堡包应助刘岚采纳,获得10
14秒前
14秒前
waitingfor完成签到,获得积分10
17秒前
赘婿应助爱听歌凤灵采纳,获得10
17秒前
小葵完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
20秒前
丰富的土豆应助ningwu采纳,获得20
20秒前
zcbb发布了新的文献求助10
23秒前
23秒前
SciGPT应助哈哈哈哈采纳,获得10
23秒前
迅速的时光完成签到,获得积分10
24秒前
25秒前
25秒前
psj完成签到,获得积分10
26秒前
酷波er应助爱科研采纳,获得10
27秒前
27秒前
失眠采白发布了新的文献求助10
29秒前
脑洞疼应助Ajin采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309