光子上转换
红外线的
可见光谱
光化学
光催化
不透明度
材料科学
光电子学
化学
催化作用
光学
物理
发光
生物化学
作者
Benjamin D. Ravetz,Andrew B. Pun,Emily M. Churchill,Daniel N. Congreve,Tomislav Rovis,Luis M. Campos
出处
期刊:Nature
[Springer Nature]
日期:2019-01-01
卷期号:565 (7739): 343-346
被引量:515
标识
DOI:10.1038/s41586-018-0835-2
摘要
Recent advances in photoredox catalysis have made it possible to achieve various challenging synthetic transformations, polymerizations and surface modifications1–3. All of these reactions require ultraviolet- or visible-light stimuli; however, the use of visible-light irradiation has intrinsic challenges. For example, the penetration of visible light through most reaction media is very low, leading to problems in large-scale reactions. Moreover, reactants can compete with photocatalysts for the absorption of incident light, limiting the scope of the reactions. These problems can be overcome by the use of near-infrared light, which has a much higher penetration depth through various media, notably biological tissue4. Here we demonstrate various photoredox transformations under infrared radiation by utilizing the photophysical process of triplet fusion upconversion, a mechanism by which two low-energy photons are converted into a higher-energy photon. We show that this is a general strategy applicable to a wide range of photoredox reactions. We tune the upconversion components to adjust the output light, accessing both orange light and blue light from low-energy infrared light, by pairwise manipulation of the sensitizer and annihilator. We further demonstrate that the annihilator itself can be used as a photocatalyst, thus simplifying the reaction. This approach enables catalysis of high-energy transformations through several opaque barriers using low-energy infrared light. Photoredox transformations are achieved with infrared light by using triplet fusion upconversion that converts infrared into visible light, enabling the use of photoredox chemistry on larger scales and through barriers that are impenetrable by visible light.
科研通智能强力驱动
Strongly Powered by AbleSci AI