已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognition and detection of tea leaf's diseases using support vector machine

支持向量机 人工智能 分类器(UML) 计算机科学 模式识别(心理学) 机器学习 疾病 医学 病理
作者
Selim Hossain,Rokeya Mumtahana Mou,Mohammed Mahedi Hasan,Sajib Chakraborty,Md. Abdur Razzak
标识
DOI:10.1109/cspa.2018.8368703
摘要

Tea is a popular beverage all around the world, and in Bangladesh the cultivation of tea plays a vital role. Many diseases affect the proper growth of tea leaves leading to its reduction, thus hindering of the production of tea. However, if the disease is identified at an early age it would solve all the above mentioned problems through the application of appropriate treatment, or through the pruning of the diseased leaves to prevent further spread of the disease. To solve this problem image processing is the best option to detect and diagnose the disease. The main goal of this research is to develop an image processing system that can identify and classify the two most widespread tea leaf diseases in Bangladesh, namely brown blight disease and the algal leaf disease, from a healthy leaf. Disease identification is the first step; there are many methods that have been used for identifying the leaf disease. In this paper, Support Vector Machine classifier (SVM) is used to recognize the diseases. Eleven features are analyzed during the classification. These features are then used to find the most suitable match for the disease (or normality) every time an image is uploaded into the SVM database. When a new picture is uploaded into the system the most suitable match is found and the disease is recognized. The approach is novel since the number of features compared by the SVM classifier is reduced by three features compared to previous researches, without adversely sacrificing the success rate of the classifier, which retains an accuracy of more than 90%. This also speeds up the identification process, with each leaf image taking 300ms less processing time compared to previous research using SVM, thus ensuring a greater number of leaves can be processed in a given time frame. The proposed solution increases in efficiency of the detection, identification, and classification process will enable the tea industry in Bangladesh to become more competitive globally, by reducing the losses suffered due to diseases of the leaf, and thus increasing the overall tea production rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
6秒前
6秒前
小王完成签到 ,获得积分10
7秒前
爱学习发布了新的文献求助30
10秒前
zzr发布了新的文献求助20
10秒前
11秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
由怜雪发布了新的文献求助10
16秒前
千纸鹤完成签到 ,获得积分10
17秒前
Charon完成签到,获得积分10
19秒前
观自在完成签到,获得积分10
25秒前
25秒前
微笑的铸海完成签到 ,获得积分10
25秒前
阿菜完成签到,获得积分10
27秒前
tracey完成签到 ,获得积分10
29秒前
Artin完成签到,获得积分10
29秒前
搜集达人应助嘎嘎的鸡神采纳,获得10
30秒前
王某人完成签到 ,获得积分10
31秒前
寻道图强应助Ji采纳,获得30
34秒前
kento完成签到,获得积分0
37秒前
由怜雪完成签到,获得积分10
41秒前
41秒前
边曦完成签到 ,获得积分10
42秒前
爱学习完成签到,获得积分10
43秒前
18-Crown-6完成签到 ,获得积分10
46秒前
48秒前
55秒前
脑洞疼应助lvsehx采纳,获得10
59秒前
Sirene发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Dr-张显华完成签到,获得积分10
1分钟前
Dr-张显华发布了新的文献求助10
1分钟前
外向思松发布了新的文献求助30
1分钟前
yyy完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171412
求助须知:如何正确求助?哪些是违规求助? 2822368
关于积分的说明 7938871
捐赠科研通 2482850
什么是DOI,文献DOI怎么找? 1322830
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627