Novel Microwave Absorption Materials of Porous Flower-Like Nickel Oxide@Polyaniline in the X-Band

非阻塞I/O 材料科学 聚苯胺 电介质 反射损耗 复合材料 氧化镍 吸收(声学) 微波食品加热 吸收带 氧化物 复合数 光学 光电子学 物理 冶金 有机化学 催化作用 化学 聚合物 量子力学 聚合
作者
Ye Liu,Honglong Xing,Lei Wang,Zhongfan Liu,Huan Wang,Haipeng Jia
出处
期刊:NANO [World Scientific]
卷期号:13 (06): 1850059-1850059 被引量:16
标识
DOI:10.1142/s1793292018500595
摘要

Porous flower nickel oxide@polyaniline (NiO@PANI) composites as excellent microwave absorption (MA) materials in the X-band were synthesized via a two-step strategy in this work. The porous NiO flower is uniformly dispersed and homogeneous in particle size after Ostwald ripening process. Coating conductive PANI on the surface of porous NiO microspheres could improve interfacial polarization and dielectric loss property that will lead to a great improvement of MA properties. Electromagnetic (EM) parameters of NiO@PANI composites with different NiO contents were investigated by a vector network analyzer and the reflection loss (RL) values with varied thickness were also calculated. The results showed that the effective absorption bandwidths ([Formula: see text][Formula: see text]dB) of all NiO@PANI composites can cover the whole X-band. Especially, the NiO@PANI[Formula: see text] composite is able to attenuate microwave energy in the X-band with the thickness of 2.5[Formula: see text]mm. The NiO@PANI[Formula: see text] has a maximum RL of [Formula: see text][Formula: see text]dB at 10.1[Formula: see text]GHz and the effective absorption bandwidths cover 4.64[Formula: see text]GHz (11.12–15.76[Formula: see text]GHz) at 2.0[Formula: see text]mm. The excellent MA absorption performance may be ascribed to the polarization effect, dielectric loss and structure of porous flower-like NiO@PANI. Our work confirms that the synthesized NiO@PANI composite is an attractive candidate as a highly efficient MA material in the X-band.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助Ll采纳,获得10
刚刚
刚刚
1秒前
Anne完成签到,获得积分10
1秒前
老迟到的凝丝完成签到,获得积分10
1秒前
金鸡奖发布了新的文献求助10
1秒前
邓邓邓妮妮子完成签到,获得积分10
1秒前
哇哈哈发布了新的文献求助10
1秒前
1秒前
andyxrz发布了新的文献求助30
2秒前
酒尚温完成签到,获得积分10
2秒前
2秒前
3秒前
Paul完成签到,获得积分10
3秒前
冰冰完成签到 ,获得积分10
3秒前
木木发布了新的文献求助10
3秒前
4秒前
涛浪完成签到,获得积分10
4秒前
上官若男应助yzy采纳,获得10
5秒前
会飞的小白完成签到,获得积分10
5秒前
5秒前
8564523发布了新的文献求助10
5秒前
珈蓝完成签到,获得积分10
6秒前
吉祥完成签到,获得积分0
6秒前
6秒前
7秒前
开心尔云完成签到,获得积分10
7秒前
在水一方应助羽言采纳,获得10
7秒前
7秒前
HZW发布了新的文献求助20
8秒前
不厌关注了科研通微信公众号
8秒前
labxgr完成签到,获得积分10
8秒前
8秒前
8秒前
吱嗷赵完成签到,获得积分20
8秒前
MADKAI发布了新的文献求助20
9秒前
木木完成签到,获得积分10
9秒前
9秒前
Jenny应助强健的月饼采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672