Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (4): 191-198 被引量:386
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
西出阳关完成签到,获得积分10
刚刚
刚刚
20完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
小叶完成签到 ,获得积分10
2秒前
wanci应助jiabangou采纳,获得10
3秒前
hhh完成签到,获得积分10
3秒前
悟123发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
yujing完成签到,获得积分10
5秒前
sdysdbd发布了新的文献求助30
5秒前
勤奋一一应助szr采纳,获得20
5秒前
5秒前
herschelwu完成签到,获得积分10
5秒前
vcjbbvb发布了新的文献求助10
6秒前
浮游应助念l采纳,获得10
6秒前
风清扬发布了新的文献求助10
6秒前
桐桐应助youyou采纳,获得10
7秒前
上官若男应助Kamchak采纳,获得10
7秒前
s33发布了新的文献求助10
7秒前
思源应助HAHA采纳,获得10
8秒前
贝壳发布了新的文献求助10
8秒前
8秒前
9秒前
renrunxue完成签到,获得积分10
9秒前
QQ发布了新的文献求助10
10秒前
失眠的南珍关注了科研通微信公众号
10秒前
10秒前
11秒前
11秒前
陈陈发布了新的文献求助10
11秒前
爱坤坤发布了新的文献求助20
11秒前
冷傲幻香发布了新的文献求助10
12秒前
咩咩咩完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952