Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:1 (4): 191-198 被引量:302
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助纸质超人采纳,获得10
1秒前
漠北发布了新的文献求助10
1秒前
1秒前
静心404完成签到,获得积分10
1秒前
CodeCraft应助深呼吸采纳,获得10
1秒前
wuhuhu完成签到 ,获得积分10
1秒前
xxxx发布了新的文献求助10
1秒前
1秒前
tosania完成签到,获得积分10
2秒前
2秒前
guanxun发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
liyi发布了新的文献求助10
2秒前
nico完成签到 ,获得积分10
3秒前
随缘完成签到 ,获得积分10
3秒前
许子健发布了新的文献求助10
3秒前
tosania发布了新的文献求助10
3秒前
Logan完成签到,获得积分10
4秒前
Yoshi完成签到 ,获得积分10
4秒前
CodeCraft应助一年5篇采纳,获得10
4秒前
噜噜晓发布了新的文献求助10
4秒前
绿色心情完成签到 ,获得积分10
5秒前
搜集达人应助Cc采纳,获得10
5秒前
5秒前
5秒前
myirwyo完成签到 ,获得积分10
5秒前
霜之哀伤发布了新的文献求助30
5秒前
pqq发布了新的文献求助10
6秒前
面缺陷完成签到,获得积分10
6秒前
6秒前
SciGPT应助长颈鹿没有脖子采纳,获得10
6秒前
华仔应助kndr10采纳,获得10
6秒前
李牧发布了新的文献求助10
7秒前
祝愿完成签到,获得积分10
7秒前
8秒前
纸质超人发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646