Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (4): 191-198 被引量:386
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷的海秋完成签到 ,获得积分20
刚刚
lkl完成签到 ,获得积分10
1秒前
小坚果发布了新的文献求助10
1秒前
Hanoi347应助tiezhu采纳,获得10
1秒前
FashionBoy应助tiezhu采纳,获得10
1秒前
hh发布了新的文献求助10
2秒前
调皮钻石完成签到,获得积分10
2秒前
於傲松发布了新的文献求助10
2秒前
ruilong完成签到,获得积分10
3秒前
lllu完成签到,获得积分10
3秒前
3秒前
勤恳的一斩完成签到,获得积分10
3秒前
Dhh发布了新的文献求助10
4秒前
zhaosheng发布了新的文献求助10
4秒前
4秒前
4秒前
蛋蛋姐姐完成签到,获得积分10
4秒前
陆斑马完成签到,获得积分10
5秒前
han完成签到,获得积分10
5秒前
YM完成签到,获得积分10
5秒前
YH完成签到,获得积分10
5秒前
小金鱼儿完成签到,获得积分10
6秒前
6秒前
光之美少女完成签到 ,获得积分10
6秒前
朻安完成签到,获得积分10
6秒前
向往生活完成签到,获得积分10
6秒前
风中虔纹完成签到,获得积分10
7秒前
7秒前
奋斗的成协完成签到,获得积分10
8秒前
完美世界应助奋斗夏烟采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
从容从灵发布了新的文献求助10
9秒前
萄葡完成签到 ,获得积分10
9秒前
俏皮沂完成签到,获得积分10
9秒前
研友_n0kYwL发布了新的文献求助10
9秒前
gincv完成签到,获得积分10
10秒前
ohh完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997