Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (4): 191-198 被引量:271
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑发布了新的文献求助30
1秒前
1秒前
1秒前
LXL完成签到,获得积分10
2秒前
N_wh完成签到,获得积分10
2秒前
安静的棉花糖完成签到 ,获得积分10
2秒前
闾丘曼安完成签到,获得积分10
2秒前
尼卡应助suy采纳,获得10
2秒前
2秒前
3秒前
思源应助xyz采纳,获得10
3秒前
3秒前
中华有为发布了新的文献求助10
4秒前
4秒前
FashionBoy应助wwww采纳,获得10
4秒前
4秒前
大方嵩发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
猪猪发布了新的文献求助10
6秒前
单薄白薇发布了新的文献求助10
6秒前
豆子完成签到,获得积分10
7秒前
通~发布了新的文献求助10
8秒前
橘子哥完成签到,获得积分10
8秒前
mnm发布了新的文献求助10
9秒前
柔弱凡松发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
SHDeathlock发布了新的文献求助50
10秒前
乐乐应助hu970采纳,获得10
10秒前
单薄白薇完成签到,获得积分10
12秒前
陈杰发布了新的文献求助10
12秒前
12秒前
12秒前
小张张发布了新的文献求助10
12秒前
乐乐应助YAN采纳,获得10
13秒前
迷惘墨香完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762