Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (4): 191-198 被引量:386
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助凯凯采纳,获得10
1秒前
小二郎应助凯凯采纳,获得10
1秒前
1秒前
Ava应助凯凯采纳,获得10
1秒前
天天快乐应助凯凯采纳,获得10
1秒前
深情安青应助凯凯采纳,获得10
1秒前
慕青应助凯凯采纳,获得10
1秒前
所所应助鹿人采纳,获得10
1秒前
李爱国应助凯凯采纳,获得10
1秒前
熬夜波比应助凯凯采纳,获得10
1秒前
Ava应助凯凯采纳,获得10
2秒前
大个应助凯凯采纳,获得10
2秒前
yyq发布了新的文献求助10
2秒前
2秒前
2秒前
快乐小猴完成签到,获得积分20
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
无奈可仁完成签到,获得积分10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助娇娇采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
进击的PhD应助科研通管家采纳,获得20
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
小猛发布了新的文献求助30
3秒前
xixi应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
orixero应助夏夏末和秋秋初采纳,获得30
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616