Clustering single-cell RNA-seq data with a model-based deep learning approach

聚类分析 计算机科学 可扩展性 数据挖掘 人工智能 特征(语言学) 样品(材料) 兰德指数 高维数据聚类 机器学习 模式识别(心理学) 语言学 色谱法 数据库 哲学 化学
作者
Tian Tian,Ji Wan,Qi Song,Zhi Wei
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:1 (4): 191-198 被引量:302
标识
DOI:10.1038/s42256-019-0037-0
摘要

Single-cell RNA sequencing (scRNA-seq) promises to provide higher resolution of cellular differences than bulk RNA sequencing. Clustering transcriptomes profiled by scRNA-seq has been routinely conducted to reveal cell heterogeneity and diversity. However, clustering analysis of scRNA-seq data remains a statistical and computational challenge, due to the pervasive dropout events obscuring the data matrix with prevailing ‘false’ zero count observations. Here, we have developed scDeepCluster, a single-cell model-based deep embedded clustering method, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Based on testing extensive simulated data and real datasets from four representative single-cell sequencing platforms, scDeepCluster outperformed state-of-the-art methods under various clustering performance metrics and exhibited improved scalability, with running time increasing linearly with sample size. Its accuracy and efficiency make scDeepCluster a promising algorithm for clustering large-scale scRNA-seq data. Clustering groups of cells in single-cell RNA sequencing datasets can produce high-resolution information for complex biological questions. However, it is statistically and computationally challenging due to the low RNA capture rate, which results in a high number of false zero count observations. A deep learning approach called scDeepCluster, which efficiently combines a model for explicitly characterizing missing values with clustering, shows high performance and improved scalability with a computing time increasing linearly with sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晶米发布了新的文献求助10
刚刚
香蕉静芙发布了新的文献求助10
1秒前
情怀应助hh采纳,获得10
1秒前
1秒前
搜集达人应助漆佳佳采纳,获得10
2秒前
3秒前
3秒前
4秒前
小小科研狗完成签到,获得积分10
4秒前
5秒前
5秒前
东晓发布了新的文献求助10
5秒前
6秒前
6秒前
研友_Z1WkgL完成签到,获得积分10
7秒前
8秒前
自觉的月亮完成签到,获得积分10
9秒前
Lee发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
zho发布了新的文献求助10
11秒前
而发的发布了新的文献求助10
11秒前
11秒前
英姑应助感动的老四采纳,获得10
11秒前
汉堡包应助刘大恒采纳,获得10
11秒前
酷波er应助畅快蓝血采纳,获得10
11秒前
孙兴燕完成签到,获得积分10
12秒前
永远明媚发布了新的文献求助10
12秒前
Ava应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
zihanwang应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4012543
求助须知:如何正确求助?哪些是违规求助? 3552455
关于积分的说明 11311736
捐赠科研通 3286547
什么是DOI,文献DOI怎么找? 1811389
邀请新用户注册赠送积分活动 887043
科研通“疑难数据库(出版商)”最低求助积分说明 811748