已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach

卷积神经网络 计算机科学 人工智能 深度学习 学习迁移 分散注意力 二元分类 移动电话 分心驾驶 计算机视觉 模式识别(心理学) 支持向量机 电信 生物 神经科学
作者
Yang Xing,Huaji Wang,Dongpu Cao,Efstathios Velenis,Fei‐Yue Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (6): 5379-5390 被引量:246
标识
DOI:10.1109/tvt.2019.2908425
摘要

Driver decisions and behaviors are essential factors that can affect the driving safety. To understand the driver behaviors, a driver activities recognition system is designed based on the deep convolutional neural networks (CNN) in this paper. Specifically, seven common driving activities are identified, which are the normal driving, right mirror checking, rear mirror checking, left mirror checking, using in-vehicle radio device, texting, and answering the mobile phone, respectively. Among these activities, the first four are regarded as normal driving tasks, while the rest three are classified into the distraction group. The experimental images are collected using a low-cost camera, and ten drivers are involved in the naturalistic data collection. The raw images are segmented using the Gaussian mixture model to extract the driver body from the background before training the behavior recognition CNN model. To reduce the training cost, transfer learning method is applied to fine tune the pre-trained CNN models. Three different pre-trained CNN models, namely, AlexNet, GoogLeNet, and ResNet50 are adopted and evaluated. The detection results for the seven tasks achieved an average of 81.6% accuracy using the AlexNet, 78.6% and 74.9% accuracy using the GoogLeNet and ResNet50, respectively. Then, the CNN models are trained for the binary classification task and identify whether the driver is being distracted or not. The binary detection rate achieved 91.4% accuracy, which shows the advantages of using the proposed deep learning approach. Finally, the real-world application are analyzed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Milky发布了新的文献求助10
2秒前
chiyudawang发布了新的文献求助10
2秒前
3秒前
风中曼彤发布了新的文献求助10
6秒前
沈业桥完成签到,获得积分10
8秒前
星辰大海应助新陈采纳,获得10
8秒前
14秒前
15秒前
16秒前
17秒前
17秒前
新陈完成签到,获得积分10
18秒前
新陈发布了新的文献求助10
20秒前
不配.应助糊涂的炳采纳,获得10
22秒前
jessica发布了新的文献求助10
22秒前
酷波er应助penguin777采纳,获得30
23秒前
搜集达人应助尊敬小馒头采纳,获得10
25秒前
26秒前
搜集达人应助科研通管家采纳,获得10
28秒前
qianzheng应助科研通管家采纳,获得10
28秒前
华仔应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
29秒前
菠萝完成签到 ,获得积分10
36秒前
bkagyin应助silence采纳,获得10
36秒前
39秒前
nycmq07关注了科研通微信公众号
40秒前
43秒前
43秒前
lulu完成签到 ,获得积分10
44秒前
MARS完成签到 ,获得积分10
46秒前
菠萝完成签到 ,获得积分10
48秒前
48秒前
思源应助酷炫的傲易采纳,获得10
49秒前
何小小关注了科研通微信公众号
49秒前
50秒前
张张张完成签到,获得积分10
50秒前
风中曼彤完成签到,获得积分10
52秒前
安静的滑板应助tian采纳,获得10
53秒前
Macgonal发布了新的文献求助10
55秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219534
求助须知:如何正确求助?哪些是违规求助? 2868357
关于积分的说明 8160662
捐赠科研通 2535389
什么是DOI,文献DOI怎么找? 1367809
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618441