Deep Learning Ensemble for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 集成学习 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 遥感 地质学
作者
Yushi Chen,Ying Wang,Yanfeng Gu,Xin He,Pedram Ghamisi,Xiuping Jia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1882-1897 被引量:91
标识
DOI:10.1109/jstars.2019.2915259
摘要

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
酷波er应助典雅胜采纳,获得10
1秒前
zhouyu完成签到,获得积分10
2秒前
科目三应助ZTK采纳,获得10
2秒前
刘奕欣发布了新的文献求助30
3秒前
爆米花应助挣扎的学渣采纳,获得10
3秒前
qy发布了新的文献求助10
3秒前
小米发布了新的文献求助10
5秒前
Moi发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
动人的惜文完成签到,获得积分10
6秒前
lmz关闭了lmz文献求助
7秒前
8秒前
9秒前
9秒前
元谷雪发布了新的文献求助10
10秒前
石翎发布了新的文献求助10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
雪白的青柏完成签到,获得积分10
12秒前
13秒前
传奇3应助小池采纳,获得10
14秒前
pp发布了新的文献求助10
14秒前
SHENJINBING完成签到,获得积分10
14秒前
DDD发布了新的文献求助10
15秒前
15秒前
噗通发布了新的文献求助10
16秒前
貔貅发布了新的文献求助10
16秒前
Auba发布了新的文献求助10
16秒前
SHENJINBING发布了新的文献求助10
18秒前
睿洁洁发布了新的文献求助10
18秒前
NexusExplorer应助67n采纳,获得30
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761057
求助须知:如何正确求助?哪些是违规求助? 5527282
关于积分的说明 15398807
捐赠科研通 4897632
什么是DOI,文献DOI怎么找? 2634274
邀请新用户注册赠送积分活动 1582397
关于科研通互助平台的介绍 1537744