Deep Learning Ensemble for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 集成学习 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 遥感 地质学
作者
Yushi Chen,Ying Wang,Yanfeng Gu,Xin He,Pedram Ghamisi,Xiuping Jia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1882-1897 被引量:91
标识
DOI:10.1109/jstars.2019.2915259
摘要

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助感动苡采纳,获得10
1秒前
雪山大地完成签到,获得积分10
1秒前
Beton_X发布了新的文献求助40
2秒前
3秒前
3秒前
嘿嘿嘿发布了新的文献求助10
3秒前
3秒前
4秒前
小肥鑫发布了新的文献求助10
5秒前
6秒前
scoot完成签到 ,获得积分10
6秒前
wjx关闭了wjx文献求助
6秒前
6秒前
蛋挞完成签到,获得积分20
6秒前
hhh完成签到 ,获得积分10
8秒前
爱学习发布了新的文献求助10
8秒前
张张发布了新的文献求助10
8秒前
wangsai0532完成签到,获得积分10
9秒前
9秒前
SciGPT应助1111111111111111采纳,获得10
9秒前
9秒前
Aaron完成签到 ,获得积分10
10秒前
xx完成签到,获得积分10
10秒前
嘿嘿嘿发布了新的文献求助10
10秒前
晗晗发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
11秒前
万能图书馆应助Joey采纳,获得10
13秒前
13秒前
14秒前
香蕉觅云应助EmmaLin采纳,获得10
14秒前
14秒前
77发布了新的文献求助10
15秒前
16秒前
FashionBoy应助泠漓采纳,获得10
16秒前
16秒前
16秒前
于大强完成签到,获得积分10
17秒前
共享精神应助晗晗采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676