Deep Learning Ensemble for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 集成学习 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 遥感 地质学
作者
Yushi Chen,Ying Wang,Yanfeng Gu,Xin He,Pedram Ghamisi,Xiuping Jia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1882-1897 被引量:91
标识
DOI:10.1109/jstars.2019.2915259
摘要

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charles发布了新的文献求助10
1秒前
1秒前
1秒前
阳光的笑旋完成签到,获得积分10
1秒前
1秒前
陈梦鼠发布了新的文献求助10
2秒前
温暖烙完成签到,获得积分20
2秒前
dd发布了新的文献求助10
2秒前
白鱼发布了新的文献求助10
3秒前
甜美的成败完成签到,获得积分10
3秒前
糖__完成签到 ,获得积分20
3秒前
霜幕发布了新的文献求助10
3秒前
3秒前
LJJZZX发布了新的文献求助10
3秒前
dusum发布了新的文献求助10
3秒前
4秒前
4秒前
若尘发布了新的文献求助10
4秒前
4秒前
星辰大海应助科研小白采纳,获得10
5秒前
5秒前
大模型应助王尧采纳,获得10
5秒前
美好斓发布了新的文献求助10
5秒前
Jasper应助幸福汽车采纳,获得10
5秒前
5秒前
Eden完成签到,获得积分10
5秒前
搜集达人应助不热情小羊采纳,获得10
5秒前
null应助nature2号采纳,获得10
5秒前
打打应助遇晴采纳,获得10
6秒前
6秒前
6秒前
害羞的衫发布了新的文献求助10
6秒前
Akim应助老迟到的百合采纳,获得10
6秒前
大个应助蔺瑾瑜采纳,获得10
6秒前
王亚平发布了新的文献求助10
6秒前
7秒前
HOAN应助yu采纳,获得30
7秒前
丘比特应助猪猪hero采纳,获得10
7秒前
超级大神完成签到,获得积分20
7秒前
松鼠叶完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972