Deep Learning Ensemble for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 集成学习 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 遥感 地质学
作者
Yushi Chen,Ying Wang,Yanfeng Gu,Xin He,Pedram Ghamisi,Xiuping Jia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1882-1897 被引量:91
标识
DOI:10.1109/jstars.2019.2915259
摘要

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
可爱的函函应助昀宇采纳,获得10
2秒前
张平一完成签到 ,获得积分10
3秒前
852应助Pooh采纳,获得10
3秒前
3秒前
愉快谷芹完成签到 ,获得积分10
4秒前
二三发布了新的文献求助10
5秒前
Owen应助勤劳糜采纳,获得10
11秒前
12秒前
13秒前
培培完成签到 ,获得积分10
15秒前
15秒前
孤独的涵柳完成签到 ,获得积分10
15秒前
17秒前
Serein完成签到,获得积分10
17秒前
哦哦完成签到,获得积分10
17秒前
忧郁凌波发布了新的文献求助10
18秒前
王建平完成签到 ,获得积分10
20秒前
小酒发布了新的文献求助10
21秒前
21秒前
23秒前
haishixigua完成签到,获得积分10
26秒前
channing完成签到,获得积分20
27秒前
东华帝君完成签到,获得积分10
28秒前
yihe发布了新的文献求助30
28秒前
warden完成签到 ,获得积分10
28秒前
宁寻凝发布了新的文献求助50
29秒前
channing发布了新的文献求助30
30秒前
hahahahaha完成签到,获得积分10
32秒前
yoyo发布了新的文献求助10
33秒前
35秒前
35秒前
飞呀完成签到,获得积分20
37秒前
LL关闭了LL文献求助
38秒前
Meya完成签到,获得积分10
39秒前
带象完成签到,获得积分10
40秒前
缓冲中完成签到 ,获得积分10
41秒前
Meya发布了新的文献求助10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343