Deep Learning Ensemble for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 集成学习 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 遥感 地质学
作者
Yushi Chen,Ying Wang,Yanfeng Gu,Xin He,Pedram Ghamisi,Xiuping Jia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1882-1897 被引量:91
标识
DOI:10.1109/jstars.2019.2915259
摘要

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助泷生采纳,获得10
1秒前
果果完成签到,获得积分20
3秒前
华仔应助一起去看海采纳,获得10
4秒前
乐乐应助郭子仪采纳,获得10
4秒前
HAOHAO发布了新的文献求助10
5秒前
隐形的雁完成签到,获得积分10
8秒前
只与你完成签到 ,获得积分10
9秒前
10秒前
传奇3应助怡然的扬采纳,获得10
11秒前
11秒前
一起去看海完成签到,获得积分20
11秒前
11秒前
ccm应助清脆琳采纳,获得10
11秒前
NexusExplorer应助果果采纳,获得10
12秒前
15秒前
xmhxpz发布了新的文献求助10
16秒前
DSFSD完成签到,获得积分10
19秒前
19秒前
进口小宵完成签到,获得积分10
21秒前
优秀藏鸟完成签到 ,获得积分10
23秒前
24秒前
泷生发布了新的文献求助10
24秒前
24秒前
25秒前
不配.应助MADAO采纳,获得200
25秒前
26秒前
三月完成签到,获得积分20
27秒前
cizzz发布了新的文献求助10
30秒前
果果发布了新的文献求助10
31秒前
31秒前
31秒前
Criminology34应助nadeem采纳,获得10
33秒前
英俊的铭应助Tom47采纳,获得10
33秒前
35秒前
王小茗发布了新的文献求助10
36秒前
暗中讨饭完成签到,获得积分10
37秒前
Vincent发布了新的文献求助10
38秒前
科研通AI6应助长大水果采纳,获得10
38秒前
39秒前
等待冰之完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432