Deep Learning Ensemble for Hyperspectral Image Classification

高光谱成像 人工智能 计算机科学 集成学习 上下文图像分类 模式识别(心理学) 图像(数学) 计算机视觉 遥感 地质学
作者
Yushi Chen,Ying Wang,Yanfeng Gu,Xin He,Pedram Ghamisi,Xiuping Jia
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1882-1897 被引量:91
标识
DOI:10.1109/jstars.2019.2915259
摘要

Deep learning models, especially deep convolutional neural networks (CNNs), have been intensively investigated for hyperspectral image (HSI) classification due to their powerful feature extraction ability. In the same manner, ensemble-based learning systems have demonstrated high potential to effectively perform supervised classification. In order to boost the performance of deep learning-based HSI classification, the idea of deep learning ensemble framework is proposed here, which is loosely based on the integration of deep learning model and random subspace-based ensemble learning. Specifically, two deep learning ensemble-based classification methods (i.e., CNN ensemble and deep residual network ensemble) are proposed. CNNs or deep residual networks are used as individual classifiers and random subspaces contribute to diversify the ensemble system in a simple yet effective manner. Moreover, to further improve the classification accuracy, transfer learning is investigated in this study to transfer the learnt weights from one individual classifier to another (i.e., CNNs). This mechanism speeds up the learning stage. Experimental results with widely used hyperspectral datasets indicate that the proposed deep learning ensemble system provides competitive results compared with state-of-the-art methods in terms of classification accuracy. The combination of deep learning and ensemble learning provides a significant potential for reliable HSI classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如闪电般归来完成签到,获得积分10
刚刚
今后应助Arthur采纳,获得10
刚刚
自然初珍发布了新的文献求助10
刚刚
落寞的小刺猬完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
黄坤完成签到,获得积分10
1秒前
希达通完成签到 ,获得积分10
1秒前
biiii发布了新的文献求助10
1秒前
1秒前
cai完成签到,获得积分10
2秒前
2秒前
充电宝应助993494543采纳,获得10
2秒前
卖火柴的小男孩完成签到 ,获得积分10
2秒前
2秒前
2秒前
小费发布了新的文献求助50
3秒前
3秒前
NexusExplorer应助lizhiqian2024采纳,获得10
3秒前
3秒前
优雅泡芙完成签到,获得积分10
3秒前
biiii发布了新的文献求助10
3秒前
着急的莫言完成签到,获得积分10
4秒前
4秒前
yoowt发布了新的文献求助10
4秒前
刻苦的安白完成签到,获得积分10
4秒前
情怀应助余小乐采纳,获得10
4秒前
biiii发布了新的文献求助10
5秒前
biiii发布了新的文献求助30
5秒前
大大杰发布了新的文献求助10
5秒前
biiii发布了新的文献求助10
5秒前
biiii发布了新的文献求助10
5秒前
5秒前
biiii发布了新的文献求助10
5秒前
biiii发布了新的文献求助10
5秒前
biiii发布了新的文献求助10
5秒前
火山书痴完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
biiii发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284