记忆电阻器
强化学习
冯·诺依曼建筑
人工神经网络
计算机科学
计算机体系结构
计算机工程
人工智能
电子工程
工程类
操作系统
作者
Zhongrui Wang,Can Li,Wenhao Song,Mingyi Rao,Daniel Belkin,Yunning Li,Peng Yan,Hao Jiang,Peng Lin,Miao Hu,John Paul Strachan,Ning Ge,Mark Barnell,Qing Wu,Andrew G. Barto,Qinru Qiu,R. Stanley Williams,Qiangfei Xia,J. Joshua Yang
标识
DOI:10.1038/s41928-019-0221-6
摘要
Reinforcement learning algorithms that use deep neural networks are a promising approach for the development of machines that can acquire knowledge and solve problems without human input or supervision. At present, however, these algorithms are implemented in software running on relatively standard complementary metal–oxide–semiconductor digital platforms, where performance will be constrained by the limits of Moore’s law and von Neumann architecture. Here, we report an experimental demonstration of reinforcement learning on a three-layer 1-transistor 1-memristor (1T1R) network using a modified learning algorithm tailored for our hybrid analogue–digital platform. To illustrate the capabilities of our approach in robust in situ training without the need for a model, we performed two classic control problems: the cart–pole and mountain car simulations. We also show that, compared with conventional digital systems in real-world reinforcement learning tasks, our hybrid analogue–digital computing system has the potential to achieve a significant boost in speed and energy efficiency. A reinforcement learning algorithm can be implemented on a hybrid analogue–digital platform based on memristive arrays for parallel and energy-efficient in situ training.
科研通智能强力驱动
Strongly Powered by AbleSci AI